Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Sửa đề: \(I\left(\dfrac{1}{2};-3\right)\)
Thay \(x=\dfrac{1}{2};y=-3\) vào (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\), ta được:
\(\left(1-2m\right)\cdot\dfrac{1}{2}+m-\dfrac{7}{2}=-3\)
=>\(\dfrac{1}{2}-m+m-\dfrac{7}{2}=-3\)
=>\(\dfrac{1}{2}-\dfrac{7}{2}=-3\)
=>-3=-3(đúng)
vậy: I(1/2;-3) là điểm cố định mà (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\) luôn đi qua
b: \(\left(d\right):y=\left(2m+1\right)x+m-2\)
\(=2mx+x+m-2\)
\(=m\left(2x+1\right)+x-2\)
Điểm mà (d) luôn đi qua có tọa độ là:
\(\left\{{}\begin{matrix}2x+1=0\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}-2=-\dfrac{5}{2}\end{matrix}\right.\)
a, Hàm số ĐB\(\Leftrightarrow\) a \(>\)0
\(\Leftrightarrow\) m-2 \(>\)0 \(\Leftrightarrow\) m \(>\)2
Vậy m\(>\)2 thì hàm số ĐB.
b,ĐTHS (*) // vs đt y=2x-1 \(\Leftrightarrow\)\(\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}m-2=2\\2m+1\ne-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=4\left(tm\right)\\m\ne-1\end{cases}}\)
Vậy m=4;m\(\neq\)-1 thì ĐTHS (*) // vs đt y=2x-1
c,Gọi A(\(x_0;y_0\)) là điểm cố định mà ĐTHS (*) luôn đi qua vs mọi m
Thay x=\(x_0\) ,y=\(y_0\) vào pt đt (*) ta đc̣:
\(y_0=\left(m-2\right)x_02m+1\)\(\Leftrightarrow\)\(mx_0-2x_0+2m+1-y_0=0\)
\(\Leftrightarrow m\left(x_0+2\right)-2x_0+1-y_0=0\left(1\right)\)
Để đt (*) luôn đi qua A vs mọi m thì pt (1) luôn đúng vs mọi m ( pt (1) có vô số nghiệm m)
Điều này xảy ra \(\Leftrightarrow\hept{\begin{cases}x_0+2=0\\-2x_0+1-y_0=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_0=-2\\y_0=5\end{cases}}\)
\(\Rightarrow A\left(-2;5\right)\)
Vậy A(-2;5) là điểm cố định mà ĐTHS (*) luôn luôn đi qua vs mọi m
a) giả sử đường thẳng trên đi qua điểm cố định A ( x0 ; y0 )
\(\Rightarrow y_0=\left(m-2\right)x_0+3\) với mọi m
\(\Leftrightarrow x_0m-\left(y_0+2x_0-3\right)=0\)với mọi m
\(\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0+2x_0-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0=3\end{cases}}}\)
Vậy điểm cố định là ( 0 ; 3 )
c) Giả sử đường thẳng d 1 luôn đi qua một điểm cố định ( x 1 ; y 1 ) với mọi giá trị của m.
⇒ y 1 = m x 1 + 2m - 1 với mọi m
⇔ m( x 1 + 2) - 1 - y 1 = 0 với mọi m
Vậy điểm cố định mà d 1 luôn đi qua với mọi giá trị của m là (-2; -1).
(m-2).x + (m-1).y=1
<=>mx-2x+my-y =1
<=>m(x+y) =2x+y+1(*)
Đẳng thức (*) luôn đúng với mọi m khi:
x+y=0 và 2x+y+1=0
Bạn tự giải phần còn lại nhé.
Điểm đó là (-1;1)
a, Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà đths luôn đi qua
\(\Leftrightarrow y_0=\left(m-1\right)x_0+3\\ \Leftrightarrow y_0=mx_0-x_0+3\\ \Leftrightarrow mx_0+3-x_0-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\3-x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=3\end{matrix}\right.\\ \Leftrightarrow A\left(0;3\right)\)
Vậy đths luôn đi qua điểm \(A\left(0;3\right)\)
\(b,\) Gọi \(B\left(x_0;y_0\right)\) là điểm cố định mà đths luôn đi qua
\(\Leftrightarrow y_0=\left(m+2\right)x_0-\left(m-1\right)\\ \Leftrightarrow mx_0+2x_0-m+1-y_0=0\\ \Leftrightarrow m\left(x_0-1\right)+\left(2x_0-y_0+1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0-1=0\\2x_0-y_0+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=1\\y_0=3\end{matrix}\right.\\ \Leftrightarrow B\left(1;3\right)\)
Vậy đths luôn đi qua điểm \(B\left(1;3\right)\)
Câu c bạn làm tương tự câu b