K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

Gọi r(x) = ax + b là dư trong phép chia f(x) cho ( x2 - 1 )

Theo đề bài ta có :

f(x) = A(x).(x+1) + 2 

f(x) = B(x).(x-1) + 4 

f(x) = C(x).(x - 1)(x + 1) + ax + b 

[ A(x) , B(x) , C(x) là thương ]

Với x = -1 => \(\hept{\begin{cases}f\left(-1\right)=2\\f\left(-1\right)=-a+b\end{cases}}\Rightarrow-a+b=2\left(1\right)\)

Với x = 1 => \(\hept{\begin{cases}f\left(1\right)=4\\f\left(1\right)=a+b\end{cases}}\Rightarrow a+b=4\left(2\right)\)

Từ (1) và (2) => Ta có hệ phương trình \(\hept{\begin{cases}-a+b=2\\a+b=4\end{cases}}\)

Giải hệ ta được a = 1 , b = 3

=> f(x) chia (x2-1) dư x + 3

17 tháng 11 2019

f(x)= (x-3). Q(x)+2 moi X 
f(x)=(x+4).H(x)+9 moi X 
=>f(3)= 2 
f( -4)= 9 
f(x)= (x^2+x-12).(x^2+3)+ ax +b 
=(x-3)(x+4). (x^2+3) +ax+b 
=>f(3)= 3a+b=2 
f(-4)=b -4a=9 
=>a= -1; b=5 
=> f(x)=(x^2+x-12)(x^2+3)-x+5 
= x^4+x^3-9x^2+2x-31

21 tháng 11 2021

Ta thấy :

x+x -12 = x2 +4x - 3x-12

               = x(x+4) - 3(x+4)

               = (x-3)(x+4)

Vì :

f(x) chia (x-1)(x+4) được x2 + 3 và còn dư

Mà số dư có bậc không vượt quá 1

   => f(x) = (x-3)(x+4)(x2 + 3) +ax +b

Ta có :

f(x) chia (x-3) dư 2

   => f(3)=2

   => 3a+b=2

f(x) chia (x+4) dư 9

   => f(-4)=9

   => b-4a=9

=> 3a+b-b+4a = 2-9

          7a          = -7

=> a= -1

=> -3 + b =2

           b=5

Vậy đa thức f(x) = (x-3)(x+4)(x2 + 3) - x + 5

13 tháng 3 2015

Đa thức thương bậc 2 => Đa thức dư có bậc cao nhất là 1

Giả sử đa thức dư là ax + b => f(x) = (x^2 - 5x + 6)(1-x^2) + ax + b = (x-2)(x-3)(1-x^2) + ax + b

Theo định lí Bezout nếu f(x) chia x-2 dư 2 thì khi x = 2 phần dư là ax + b = 2a+b = 2 (1)

Tương tự 3a+b = 7 (2)

(2) - (1) = a = 5 => b = -8

khi đó f(x) = (x^2 - 5x + 6)(1-x^2) + 5x - 8

Bạn khai triển ra...

10 tháng 5 2017

Tìm m để đa thức g(x) = f(x) + m chia hết cho x-5

1 tháng 10 2020

1) Xét 4 số a,b,c,d nguyên dương

4 số đó được gọi là đôi một nguyên tố cùng nhau khi mỗi cặp số bất kỳ trong 4 số đó đều nguyên tố cùng nhau

Cụ thể như sau:

Khi a,b,c,d nguyên tố cùng nhau thì: 

\(\left(a,b\right)=1\) ; \(\left(a,c\right)=1\) ; \(\left(a,d\right)=1\) ; \(\left(b,c\right)=1\) ; \(\left(b,d\right)=1\) ; \(\left(c,d\right)=1\)

1 tháng 10 2020

2) Theo đề bài ta có: \(\hept{\begin{cases}f\left(x\right)=\left(x+2\right)\cdot P+8\\f\left(x\right)=\left(x-2\right)\cdot Q+20\end{cases}}\) với P,Q là các đa thức

Từ đó suy ra: \(\hept{\begin{cases}f\left(-2\right)=\left(-2+2\right)\cdot P+8=8\\f\left(2\right)=\left(2-2\right)\cdot Q+20=20\end{cases}}\) (1)

Mà khi f(x) chia x2 - 4 được thương là -5x và còn dư nên ta có:

G/s f(x) có dạng: \(f\left(x\right)=\left(x^2-4\right)\cdot\left(-5x\right)+mx+n=\left(x-2\right)\left(x+2\right)\left(-5x\right)+mx+n\)

Từ (1) ta có: \(\hept{\begin{cases}\left(-2-2\right)\left(-2+2\right)\left(-5.2\right)-2m+n=8\\\left(2-2\right)\left(2+2\right)\left(-5.2\right)+2m+n=20\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-2m+n=8\\2m+n=20\end{cases}}\Rightarrow\hept{\begin{cases}m=3\\n=14\end{cases}}\)

Vậy \(f\left(x\right)=\left(x^2-4\right).\left(-5x\right)+3x+14\)

\(=-5x^3+20x+3x+14\)

\(=-5x^3+23x+14\)

21 tháng 1 2015

Vì f(x) chia cho x2-5x+6 được thương là 1-x2 và còn dư nên f(x) có bậc 4 và đa thức dư bậc cao nhất là 1.

Gọi f(x)=(x-2)(x-3)(1-x2)+ax+b

Ta có f(2)=2 vaf(3)=7 thay vào tìm đc a và b suy ra đa thức  f(x) cần tìm.

Giải giùm nha!!

7 tháng 2 2018

Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

17 tháng 2 2015

Huyền hỏi 2 bài liên tiếp à viết nhanh thế

17 tháng 2 2015

Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?

1 tháng 2 2021

rfyfhjd  fdued rdf fdu fusb 34 hfuc * 45 jd bj gdjfjeitbig hkffr giodsd  fdfb  

19 tháng 9 2015

F(x) = ( x + 3 )( x - 4 ).3x + ax + b 

F(-3) = 1 => -3a + b = 1 => b = 1 + 3a 

F(4) = 8 => 4a + b = 8 thay b = 1 + 3a 

=> 7a + 1 = 8 => a =  1 => b = 1 + 3 = 4 

=> f(x) = ( x + 3 )( x - 4 ).3x + x + 4 

đến đây chỉ việc nhân ra thôi 

25 tháng 4 2018

Gọi thương của phép chia   f(x)    cho  (x+2)  là  A(x);   cho  (x-2)   là   B(x)

Theo bài ra ta có:   f(x)  =  (x+2).A(x) + 10           \(\Rightarrow\)   f(-2) = 10

                               f(x)  =  (x-2).B(x) + 24                        f(2)  =  24

Gọi số dư khi chia  f(x)   cho  x- 4   là  ax + b

Ta có:     \(f\left(x\right)=\left(x^2-4\right).\left(-5x\right)+ax+b\)

                          \(=\left(x-2\right)\left(x+2\right)\left(-5x\right)+ax+b\)

Vì biểu thức trên đúng với mọi  x  nên ta lần lượt thay  \(x=-2;\)\(x=2\)vào biểu thức được:

\(f\left(-2\right)=-2a+b=10\)        \(\Rightarrow\) \(a=3,5\)

\(f\left(2\right)=2a+b=24\)                             \(b=7\)

Vậy   \(f\left(x\right)=\left(x^2-4\right).\left(-5x\right)+3,5x+7\)

                       \(=-5x^3+23,5x+7\)

P.s:  tham khảo nhé

26 tháng 1 2023

bài làm sai rồi

nếu a=3,5 và b=7 thì -2a+b=0

mà -2a+b=10

=> a=3,5 và b=7 (vô lí)