K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2015

Đặt x30 + x4 + x2015 + 1 = f(x) . Ta có : f(1) = 130 + 14 + 12015 + 1 = 4  ; f(-1) = (-1)30 + (-1)4 + (-1)2015 + 1 = 0.

Vì đa thức chia bậc 2 nên đa thức dư bậc 1 có dạng ax + b. Do đó :

f(x) = (x-1).q(x) + ax + b.

f(1) = (12 - 1).q(x) + a.1 + b = a + b ; f(-1) = ((-1)2 - 1).q(x) + a.(-1) + b = - a + b

Vậy a + b = 4 và - a + b = 0. Giải ra đc a = b = 2. Suy ra đa thức dư

 

29 tháng 3 2021

có f(x)=(x+1)A(x)+5f(x)=(x+1)A(x)+5

f(x)=(x2+1)B(x)+x+2f(x)=(x2+1)B(x)+x+2

do f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là bậc 3 nên số dư là bậc 2. ta có f(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+caf(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−a

=(x2+1)(C(x).x+C(x)+a)+bx+ca=(x2+1)(C(x).x+C(x)+a)+bx+c−a

Vậy bx+ca=x+2\hept{b=1ca=2bx+c−a=x+2⇒\hept{b=1c−a=2

mặt khác ta có f(1)=5ab+c=5a+c=6\hept{a=2c=4f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4

vậy số dư trong phép chia f(x) cho x3+x2+x+1x3+x2+x+1là 2x2+x+4

1 tháng 5 2021

quá đơn giản

13 tháng 5 2021

đơn giản thì trả lời đi , fly color à bạn :))) 

17 tháng 10 2015

Bậc của đa thức chia x- 1 bằng 2 => Đa thức dư có dạng ax + b. Gọi Q(x) là thương của phép chia

=> x2015 - x10 - x= (x- 1).Q(x) + (ax + b)

Thay lần lượt x = 1; x = -1 ta được:

-1 = a + b

-3 = -a + b 

=> (a+ b) + (-a + b) = 2b = -4 => b = - 2 => a = -1 - (-2) = 1

Vậy đa thức dư là: x - 2