K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2017

f(x) = ax2 + bx + c

f(x - 1) = a(x - 1)2 + b(x - 1) + c = a(x2 - 2x + 1) + bx - b + c = ax2 - 2ax + a + bx - b + c

f(x) - f(x - 1) = (ax2 + bx + c) - (ax2 - 2ax + a + bx - b + c) = ax2 + bx + c - ax2 + 2ax - a - bx + b - c = 2ax - a + b

mà f(x) - f(x - 1) = 2x - 1

=> 2ax - a + b = 2x - 1

<=> 2ax - a + b - 2x + 1 = 0

<=> 2x(a - 1) - (a - 1) + b = 0

<=> (a - 1)(2x - 1) + b = 0

<=> a - 1 = 0 và b = 0

<=> a = 1 và b = 0

Chọn c tuỳ ý.

Chọn c = 0 => f(x) = x2

Đặt f(n) = n2

1 = f(1) - f(0)

3 = f(2) - f(1)

5 = f(3) - f(2)

. . .

2n - 1 = f(n) - f(n - 1)

S = 1 + 3 + 5 + . . . (2n - 1) = f(1) - f(0) + f(2) - f(1) + f(3) - f(2) + . . . + f(n) - f(n -1) = f(n) - f(0) = n2

Vậy S = 1 + 3 + 5 + . . . (2n - 1) = n2

6 tháng 2 2017

AN TRAN DOAN https://olm.vn/hoi-dap/question/219136.html

2 tháng 10 2015

f(x) là đa thức bậc hai nên đặt f(x) = ax+ bx + c

=> f(x - 1) = a(x - 1)+ b(x - 1) + c 

=> f(x) - f(x - 1) = a.[x- (x - 1)2] + b[x - (x - 1)] = a.(2x - 1) + b = 2ax + (b - a) 

Để f(x) - f(x - 1) = x thì 2ax + (b - a) = x <=> 2a = 1 và b - a = 0 => a = b = 1/2. Chọn c tùy ý

Chọn c = 0 , Vậy đa thức f(x) = \(\frac{x^2+x}{2}=\frac{x\left(x+1\right)}{2}\)

Áp dụng tính S: Đặt f(n) = \(\frac{n\left(n+1\right)}{2}\) ta có: 

1 = f(1) - f(0); 2= f(2) - f(1); ...; n = f(n) - f(n - 1)

=> S = 1 + 2 + ...+ n = f(1) - f(0) + f(2) - f(1) + ...+ f(n) - f(n - 1) = [f(1) + f(2) + ....+ f(n)] - [f(0) + f(1) + ...+ f(n-1)]

S = f(n) - f(0) = \(\frac{n\left(n+1\right)}{2}\)

Vậy.............

 

1 tháng 10 2015

xét f(x)=ax^2 cộg bx cộg c 
f(x)-f(x-1)=x 
<=>2ax-(a-b)=x 
vì phân tích trên là duy nhất suy ra a=b=1/2 
nên f(x)=(x^2 cộng x)/2 cộg c (c là hằg số) 
cho x=0,1,2,...n rồi cộng lại ta đc: 
f(n)-f(0)=1 cộng 2 cộng...cộg n 
<=>(x^2 cộg x)/2=1 cộg 2 cộg...cộng n. 

lưu ý:từ bài này ta có thể suy ra cách tính tổng của một số dãy số. 

10 tháng 8 2016

Câu hỏi của Bui Cam Lan Bui - Toán lớp 8 - Học toán với OnlineMath

10 tháng 11 2018

1) Gọi \(f\left(x\right)=3x^3+bx^2+cx+d\)

Ta có: \(f\left(1\right)=3+b+c+d=-1\Rightarrow b+c+d=-4\left(1\right)\)

Lại có: \(f\left(2\right)=24+4b+2c+d=2\Rightarrow4b+2c+d=-22\left(2\right)\)

Từ (1); (2) \(\Rightarrow3b+c=-18\)

Mặt khác: \(f\left(10\right)-f\left(-7\right)=3.1000+100b+10c+d+343-49b+7c-d\)

\(=3343+17.\left(3b+c\right)=3343-17.18=3037\)

Câu 2 tương tự