K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 8 2020

\(\Leftrightarrow\left\{{}\begin{matrix}u_1=1\\\frac{u_n}{n}=\frac{u_{n-1}}{n-1}+1\end{matrix}\right.\)

Đặt \(v_n=\frac{u_n}{n}\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_n=v_{n-1}+1\end{matrix}\right.\)

\(\Rightarrow v_n\) là CSC với công sai \(d=1\)

\(\Rightarrow v_n=1+\left(n-1\right).1=n\)

\(\Rightarrow\frac{u_n}{n}=n\Rightarrow u_n=n^2\)

Câu b có vẻ đề sai, số hạng cuối không thể là \(u_n\) mà phải là 1 số hữu hạn ví dụ \(u_{2016}\) gì đó

Hoặc nếu nó là \(u_n\) thì đề sẽ là "tìm n lớn nhất sao cho..."

Dù sao từ tổng: \(\sum u_n=\sum n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) có thể dễ dàng giải được khi đề bài chính xác

Ta có:

\(nu_{n+2}-\left(3n+1\right)u_{n+1}+2\left(n+1\right)u_n=3\)

\(\Leftrightarrow n\left(u_{n+2}-2u_{n+1}\right)-\left(n+1\right)\left(u_{n+1}-2u_n\right)=3\)

Đặt \(u_{n+1}-2u_n=v_n\)

\(\Rightarrow\left\{{}\begin{matrix}v_1=u_2-2u_1=-2-2.\left(-1\right)=0\\nv_{n+1}-\left(n+1\right)v_n=3\left(1\right)\end{matrix}\right.\)

Từ \(\left(1\right)\Rightarrow\dfrac{1}{n+1}v_{n+1}-\dfrac{1}{n}v_n=\dfrac{3}{n\left(n+1\right)}\)

Ta có:

\(\dfrac{1}{2}v_2-v_1=\dfrac{3}{1.2}\)

\(\dfrac{1}{3}v_3-\dfrac{1}{2}v_2=\dfrac{3}{2.3}\)

\(\dfrac{1}{4}v_4-\dfrac{1}{3}v_3=\dfrac{3}{3.4}\)

\(...\)

\(\dfrac{1}{n}v_n-\dfrac{1}{n-1}v_{n-1}=\dfrac{3}{\left(n-1\right)n}\)

\(\dfrac{1}{n+1}v_{n+1}-\dfrac{1}{n}v_n=\dfrac{3}{n\left(n+1\right)}\)

Cộng theo vế, ta có:

\(\dfrac{1}{n+1}v_{n+1}-v_1=3\left(1-\dfrac{1}{n+1}\right)\)

\(\Rightarrow v_{n+1}=3n\Leftrightarrow v_n=3\left(n-1\right)\)

\(\Rightarrow u_{n+1}-2u_n=3\left(n-1\right)\)

\(\Leftrightarrow u_{n+1}+3\left(n+1\right)=2\left(u_n+3n\right)\)

Đặt \(a_n=u_n+3n\Rightarrow\left\{{}\begin{matrix}a_1=u_1+3=2\\a_{n+1}=2a_n\end{matrix}\right.\)

\(\Rightarrow a_n=2^n\)\(\Rightarrow u_n=2^n-3n\)\(,\forall n\in N\text{*}\)

8 tháng 8 2022

1) Có \(u_{n+1}-u_n=\dfrac{1}{2}u^2_n-2u_n+2=\dfrac{1}{2}\left(u_n-2\right)^2\) (1)

+) CM \(u_n>2\) (n thuộc N*)

n=1 : u1= 5/2 > 2 (đúng)

Giả sử n=k, uk > 2 (k thuộc N*)

Ta cần CM n = k + 1. Thật vậy ta có:

\(u_{k+1}=\dfrac{1}{2}u^2_k-u_k+2=\dfrac{1}{2}\left(u_k-2\right)^2+u_k\) (đúng)

Vậy un > 2 (n thuộc N*)        (2)

Từ (1) (2) => un+1 - u> 0, hay un+1 > un

=> (un) là dãy tăng => \(\lim\limits_{n\rightarrow\infty}u_n=+\infty\)

 

2) \(2u_{n+1}=u^2_n-2u_n+4\)

\(\Leftrightarrow2u_{n+1}-4=u^2_n-2u_n\)

\(\Leftrightarrow2\left(u_{n+1}-2\right)=u_n\left(u_n-2\right)\)

\(\Leftrightarrow\dfrac{1}{u_{n+1}-2}=\dfrac{2}{u_n\left(u_n-2\right)}=\dfrac{1}{u_n-2}-\dfrac{1}{u_n}\)

\(\Leftrightarrow\dfrac{1}{u_n}=\dfrac{1}{u_n-2}-\dfrac{1}{u_{n+1}-2}\)

\(S=\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}\)

\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_2-2}+\dfrac{1}{u_2-2}+...-\dfrac{1}{u_{n+1}-2}\)

\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_{n+1}-2}\)

\(=2-\dfrac{1}{u_{n+1}-2}\)

\(\Leftrightarrow\lim\limits_{n\rightarrow\infty}S=2\)

19 tháng 2 2021

Bạn tham khảo câu trả lời của anh Lâm

https://hoc24.vn/cau-hoi/.334447965337