K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2023

Ta tính một vài giá trị đầu của Un:

\(U_1=3;U_2=7;U_3=15;U_4=35;U_5=83\)

Đặt \(U_{n+1}=aU_n+bU_{n-1}+c\) (*)

Khi đó thay lần lượt \(n=2,n=3,n=4\) vào (*), ta có:

\(\left\{{}\begin{matrix}15=7a+3b+c\\35=15a+7b+c\\83=35a+15b+c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\\c=-2\end{matrix}\right.\)

Do đó \(U_{n+1}=2U_n+U_{n-1}-2\)

15 tháng 12 2019

sửa:\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\)

Áp dụng bđt AM-GM ta có:

\(\sqrt{\left(x+2y\right).1}\le\frac{x+2y+1}{2}\)

\(\sqrt{\left(y+2z\right).1}\le\frac{y+2x+1}{2}\)

\(\sqrt{\left(z+2x\right).1}\le\frac{z+2x+1}{2}\)

Cộng từng vế đẳng thức trên ta được:

\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\le\frac{3\left(x+y+z\right)+3}{2}=3\)

Dấu"="xảy ra \(\Leftrightarrow x+2y=1;y+2z=1;z+2x=1;x=y=z;x+y+z=1\)

                       \(\Leftrightarrow x=y=z=\frac{1}{3}\)

Vậy...

1. Tổng các hệ số của đa thức là: 12004.22005=22005

2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.

Nhận thấy x = 1 không là nghiệm của phương trình .

Nhân cả hai vế của pt cho (x−1)≠0 được : 

(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)

Vậy pt trên vô nghiệm.

25 tháng 2 2018

1. Tổng các hệ số của đa thức là: 

12014 . 22015 = 22015

2 . Cần chứng minh. 

\(x4 + x3 + x2 + x + 1 = 0\)

Vô nghiệm. 

Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình. 

Nhân cả hai vế của phương trình cho:

\(( x - 1 ) \) \(\ne\) \(0\) được :

\(( x-1). (x4+x3+x2+x+1)=0\)

\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)

Vô lí. 

Vậy phương trình trên vô nghiệm. 

19 tháng 8 2020

a) N = \(\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

N = \(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

N = \(\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

N = \(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

N = \(\frac{\sqrt{x}}{\sqrt{x}-2}\)

b) Với x \(\ge\)0; x \(\ne\)4

Ta có: N = \(\frac{1}{-3}\) <=> \(\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{1}{-3}\)

=> \(-3\sqrt{x}=\sqrt{x}-2\)

<=> \(-4\sqrt{x}=-2\)

<=> \(\sqrt{x}=\frac{1}{2}\)

<=> \(x=\frac{1}{4}\)

c) x = 25 => N = \(\frac{\sqrt{25}}{\sqrt{25}-2}=\frac{5}{5-3}=\frac{5}{2}\)

19 tháng 8 2020

a) \(N=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

\(N=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(N=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(N=\frac{\left(\sqrt{x}+2\right)\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(N=\frac{\sqrt{x}}{\sqrt{x}-2}\)

b) \(N=-\frac{1}{3}\)

\(\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-2}=-\frac{1}{3}\)

\(\Leftrightarrow3\sqrt{x}=2-\sqrt{x}\)

\(\Leftrightarrow4\sqrt{x}=2\)

\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)

c) \(N=\frac{\sqrt{25}}{\sqrt{25}-2}=\frac{5}{5-2}=\frac{5}{3}\)