K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

Ta thấy mọi lũy thừa trong tổng đều có số mũ chia 4 dư 1 nên theo quy tắc 2 , mọi lũy thừa và cơ số trong tổng có chữ số tận cùng giống nhau , bằng chữ số tận cùng của tổng

                               2 + 3 + 4 + ...... + 2004 = 2003.2004/2 - 1 = 2007005

Vậy tổng S có chữ số tận cùng là 5

30 tháng 11 2017

Lời giải :

Nhận xét : Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n – 2) + 1, n thuộc {2, 3, …, 2004}).

Theo tính chất 2, mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng :

(2 + 3 + … + 9) + 199.(1 + 2 + … + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + … + 9) + 9 = 9009.

Vậy chữ số tận cùng của tổng S là 9.

22 tháng 2 2016

Các bạn xem mình có làm đúng ko ?

Nhận xét: Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, ..., 2004}).

Theo tính chất 2, mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng:

(2 + 3 + ... + 9) + 199.(1 + 2 + ... + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + ... + 9) + 9 = 9009.

Vậy chữ số tận cùng của tổng S là 9.

Từ tính chất 1 tiếp tục => tính chất 3.

22 tháng 2 2016

cac bạn xem mình trả lời có đung ko ?

Nhận xét: Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, ..., 2004}).

Theo tính chất 2, mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng:

(2 + 3 + ... + 9) + 199.(1 + 2 + ... + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + ... + 9) + 9 = 9009.

Vậy chữ số tận cùng của tổng S là 9.

15 tháng 10 2018

Nhận xét Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n – 2) + 1, n thuộc {2, 3, …, 2004}).

 mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng:

(2 + 3 + … + 9) + 199.(1 + 2 + … + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + … + 9) + 9 = 9009.

Vậy chữ số tận cùng của tổng S là 9.

29 tháng 3 2015

tinbhs chất để áp dụng vào bài toán:

Tính chất 2 : Một số tự nhiên bất kì, khi nâng lên lũy thừa bậc 4n + 1 (n thuộc N) thì chữ số tận cùng vẫn không thay đổi.

Chữ số tận cùng của một tổng các lũy thừa được xác định bằng cách tính tổng các chữ số tận cùng của từng lũy thừa trong tổng.

29 tháng 3 2015

Tính chất 2 : Một số tự nhiên bất kì, khi nâng lên lũy thừa bậc 4n + 1 (n thuộc N) thì chữ số tận cùng vẫn không thay đổi.

Chữ số tận cùng của một tổng các lũy thừa được xác định bằng cách tính tổng các chữ số tận cùng của từng lũy thừa trong tổng.

(tính chất để áp dụng vào bài toán)

30 tháng 11 2017

Nhận xét : Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n – 2) + 1, n thuộc {2, 3, …, 2004}).

Theo tính chất 2, mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng :

(2 + 3 + … + 9) + 199.(1 + 2 + … + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + … + 9) + 9 = 9009.

Vậy chữ số tận cùng của tổng S là 9.

7 tháng 1 2015

Nhận xét :

1 = 4 x 0 + 1

5 = 4 x 1 + 1

9 = 4 x 2 + 1 

.................

8009 = 4 x 2002 + 1

Mỗi số hạng của S đều được nâng lên lũy thừa 4n + 1 nên giữ nguyên chữ số tận cùng . Vậy chữ số tận cùng của S là :

2 + 3 + 4 + ....... + 2004 = \(\frac{\left(2004+2\right)\times2003}{2}=1003\times2003=...........9\)

24 tháng 10 2016

9 mk làm rồi

11 tháng 10 2016

Nhận xét: Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, ..., 2004}).

 mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng:

(2 + 3 + ... + 9) + 199.(1 + 2 + ... + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + ... + 9) + 9 = 9009.

Vậy chữ số tận cùng của tổng S là 9.