Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét: Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, ..., 2004}).
mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng:
(2 + 3 + ... + 9) + 199.(1 + 2 + ... + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + ... + 9) + 9 = 9009.
Vậy chữ số tận cùng của tổng S là 9.
Dễ thấy mọi số mũ đều có dạng 4k+1
=> \(1+2^5+3^9+4^{13}+........+504^{2013}+505^{2017}=\left(....1\right)+\left(.....2\right)+..........+\left(...4\right)+\left(....5\right)\)
chia tổng A thành 50 nhóm và thừa 5 số hạng cuối
Chữ số tận cùng của 50 là:
50=10.5 có chứa thừa số 10
nên cstc của 50 nhóm là: 0
cstc của của 5 số hạng cuối là: 5
=> A có tc là: 5
a) Ta có:
S=51+52+53+...+596 gồm 96 số hạng
=(51+52+...+56)+(57+58+...+512)+...+(591+592+...+596)
=(51+52+...+56)+56.(51+52+...+56)+...+585.(51+52+...+56)
=19530+56.19530+...+585.19530
=19530.(1+55+...+585)
Vậy: S chia hết cho 126(Vì 19530 chia hết cho 126)
b) Vì S chia hết cho 19530 nên S có tận cùng bằng 0(19530=1953.10)
M=tan cung 5=> C=5
2)=> d=0
3)ab=10a+b=a+b^2
9a=b(b-1)=>b=9; a=8
ds:8950