Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm chữ số tận cùng của \(234^{6^{7^8}}\):
\(7^{4n}\)có chữ số tận cùng là 1 => \(7^8\)có chữ số tận cùng là 1.
Ta có: \(234^{6^{\left(...1\right)}}\)
\(6^n\)có chữ số tận cùng là 6 (n \(\in\) N*) => \(6^{\left(...1\right)}\)có chữ số tận cùng là 6.
Ta lại có: \(234^{\left(...6\right)}\)
Số có chữ số tận cùng là 4 khi nâng lên lũy thừa với số mũ 6 luôn có chữ số tận cùng là 6 =>\(234^{\left(...6\right)}\)có chữ số tận cùng là 6.
Kết luận \(234^{6^{7^8}}\)có chữ số tận cùng là 6.
Mình chắn chắn 100%. Mình đã mất công ghi lời giải rồi thì bạn chọn Đúng cho mình đi !
A = \(9999^{999^{99^9}}\)
Vì 999 không chia hết cho 2 nên \(999^{99^9}\) không chia hết cho 2
Vậy \(999^{99^9}\) = 2k + 1
A = 99992k+1
A = (99992)k.9999
A = \(\overline{...1}\)k. 9999
A = \(\overline{..1}\).9999
A = \(\overline{..9}\)
B = vì 8 ⋮ 2 nên \(8^{7^{6^{5^{3^2}}}}\) ⋮ 2
Vậy B = 92k = (92)k = \(\overline{..1}\)k = \(\overline{..1}\)
72006 = 72.(74)501
Vì (74)501 có chữ số tận cùng bằng 1
Nên 72006 có chữ số tận cùng bằng 9
\(234^{5^{6^7}}\)có tận cùng là 6
vì 2345 = ........4
.....46 = .............6
.............67 = ..............6
RẤT ĐƠN GIẢN LÀ
576 MŨ 6 MŨ 7 MŨ 5 CÓ TẬN CÙNG BẰNG 6
VÌ SỐ CÓ TẬN CÙNG BẰNG 6 THÌ NÂNG LÊN LŨY THỪA NÀO CŨNG BẰNG 6
K CHO MÌNH NHÉ !!!!!!!!
a) \(100-\left(3.5^2-2.3^3\right)\)
\(100-\left(75-52\right)=100-23=77\)
b)\(4.5^2-3.2^3+3^9:3^7\)
\(100-24+9=85\)
c) \(\left(392:7\right).2^3-2^3+2020^0\)
\(8\left(56-1\right)+1=441\)
d) \(\left(6^2+7^2+8^2+9^2+10^2\right)-\left(1^2+2^2+3^2+4^2+5^2\right)=275\)
(lười - thông cảm :(
Đây bạn ơi a,\(100-\left(3.5^2-2.3^3\right)=100-\left(75-54\right)\))=100-19=81
b,\(4.5^2-3.2^3+\frac{3^9}{3^7}=100-24+9=85\)
c,\(\left(392:7\right).2^3-2^3+2020^0=56.2^3-2^3+1=441\)
d,\(=\left(6^2-1^2\right)+\left(7^2-2^2\right)+\left(8^2-3^3\right)+\left(9^2-4^2\right)+\left(10^2-5^2\right)\)
=\(5.7+5.9+5.11+5.13+5.15=5\left(7+9+11+13+15\right)\)
=\(5.55=275\)
3 không chia hết cho 2 nên
\(3^{5^7}\) không chia hết cho 2
Vậy A = 19992k+1
A = (19992)k.1999
A = \(\overline{...1}\)k.1999
A = \(\overline{..9}\)
Vì 6 ⋮ 2 nên \(6^{8^9}\) ⋮ 2
Vậy B = 20242k = (20242)k = \(\overline{..6}\)k = \(\overline{..6}\)