Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=\left(x-1\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0=>x=1\\\left(y+1\right)^2=0=>y=-1\end{cases}}\left(x,y\right)=\left(1,-1\right)\)
x2+xy+y2=x2y2
=>x2+2xy+y2=x2y2+xy
=>(x+y)2=xy(xy+1)
Do xy và xy+1 là 2 số nguyên liên tiếp nên tích của xy và xy+1 không thể là số chính phương
Mà (x+y)2 là số chính phương nên không tìm được x,y thõa mãn
xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
3x2 + 3y2 +4xy+2x - 2y +2 = 0
<=> (2x2 + 4xy + 2y2) + (x2 + 2x + 1) + (y2 - 2y + 1) = 0
<=> 2(x + y)2 + (x + 1)2 + (y - 1)2 = 0
<=> x = - y = - 1
Thế vô ta được
(x+y)2010+ (x+2)2011+(y-1)2012
= (- 1 + 1)2010 + (- 1 + 2)2011 + (1 - 1)2012 = 1