K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
15 tháng 12 2016
3x2 + 3y2 +4xy+2x - 2y +2 = 0
<=> (2x2 + 4xy + 2y2) + (x2 + 2x + 1) + (y2 - 2y + 1) = 0
<=> 2(x + y)2 + (x + 1)2 + (y - 1)2 = 0
<=> x = - y = - 1
Thế vô ta được
(x+y)2010+ (x+2)2011+(y-1)2012
= (- 1 + 1)2010 + (- 1 + 2)2011 + (1 - 1)2012 = 1
AH
Akai Haruma
Giáo viên
24 tháng 12 2018
Lời giải:
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow 2(x^2+y^2+2xy)+x^2+y^2+2x-2y+2=0\)
\(\Leftrightarrow 2(x^2+y^2+2xy)+(x^2+2x+1)+(y^2-2y+1)=0\)
\(\Leftrightarrow 2(x+y)^2+(x+1)^2+(y-1)^2=0\)
Ta thấy:
\(\left\{\begin{matrix} 2(x+y)^2\geq 0\\ (x+1)^2=0\\ (y-1)^2\geq 0\end{matrix}\right.\). Do đó để tổng của chúng bằng $0$ thì:
\((x+y)^2=(x+1)^2=(y-1)^2=0\)
\(\Rightarrow x=-1; y=1\)
Vậy.........