Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(^{n^2+15}\)là số chính phương nên đặt \(n^2+15=a^2\left(a\in N\right)\)
\(\Rightarrow n^2-a^2=-15\Rightarrow n^2-an+an-a^2=-15\Rightarrow\left(n^2-an\right)+\left(an-a^2\right)=-15\)
\(\Rightarrow n\left(n-a\right)+a\left(n-a\right)=-15\Rightarrow\left(n+a\right)\left(n-a\right)=-15\)
Vì \(a,n\in N\Rightarrow n-a\le n+a\)
Xét các trường hợp, bài toán đưa về dạng tổng-hiệu:
TH1:\(\hept{\begin{cases}n-a=-1\\n+a=15\end{cases}\Rightarrow\left(n,a\right)=\left(8,7\right)}\Rightarrow n=8\)
TH2:\(\hept{\begin{cases}n-a=-3\\n+a=5\end{cases}\Rightarrow n=1}\)
TH3:\(\hept{\begin{cases}n-a=-5\\n+a=3\end{cases}\Rightarrow n=-1\notin N\Rightarrow}\)loại
TH4\(\hept{\begin{cases}n-a=-15\\n+a=1\end{cases}\Rightarrow n=-7\notin N\Rightarrow}\)loại
2 bài còn lại dễ ,bạn tự làm nhé
cậu b cũng tương tự
vd:11=1.11=11.1=(-11).(-1)=(-1)/(-11)
Suy ra:
2x-1 | 1 | 11 | -11 | -1 |
x+4 | 11 | 1 | -1 | -11 |
rồi bạn tìm x thôi
Ta có:
x-xy+y=4
<=>-x(y-1)+y-1=3
<=>-x(y-1)+(y-1)=3
<=>(y-1).(1-x)=3=3.1=(-3).(-1)
...
=>Các cặp (x;y) t/m là:(0;4);(4;0);(-2;2);(2;-2)
x-xy+y=4
(=) x(1-y) +y =4
(=) x(1-y) - (1-y) =4-1
(=) (1-y)(x-1)=3
vì 3 là số ngyên tố
mà x,y là các số nguyên =) 1-y và x-1 cũng là các số nguyên
ta đc
1-y=1(=)y=0 hoặc 1-y=3(=)y=-2
x-1=3 (=)x=4 x-1=1(=)x=2
vậy các cặp số nguyên x,y thỏa mãn pt là (x;y)=(4;0) , (2;-2)
A, => x+2=0 hoặc y-3=0
=> x=-2 hoặc y=3
B, => x+1=0 hoặc xy-1=0
=> x=-1 hoặc xy=1
=> x=-1 hoặc x=y=+-1
a) \(\left(x+2\right).\left(y-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
vậy \(\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
b) \(\left(x+1\right)\left(xy-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\xy-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\xy=1\end{cases}}\)
vậy \(\orbr{\begin{cases}x=-1\\xy=1\end{cases}}\)
a) xy + x + 2y = 5
=> (xy + x) + 2y + 2 = 7
=> x(y + 1) + 2(y + 1) = 7
=> (x + 2)(y + 1) = 7
=. x + 2 \(\in\) (7) = {-1; -7; 1; 7}
Ta có bảng sau:
x + 2 | -1 | 1 | -7 | 7 |
x | -3 | -1 | -9 | 5 |
y + 1 | -7 | 7 | -1 | 1 |
y | -8 | 6 | -2 | 0 |
Vậy (x; y) \(\in\){(-3; -8); (-1; 6); (-9; -2); (5; 0)}
a) <=> (xy+x) + 2y + 2 = 7
=> x(y+1) + 2(y+1) = 7
=> (x+2)(y+1) = 7
Vì x nguyên => x+2 \(\in\) Ư(7)= {7;-7;1;-1}
Ta có bảng sau:
x+2 | 7 | -7 | 1 | -1 |
x | 5 | -9 | -1 | -3 |
y+1 | 1 | -1 | 7 | -7 |
y | 0 | -2 | 6 | -8 |
Vậy (x;y) = (5;0); (-9;-2) ; (-1;6); (-3;-8)