Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3x=2y\)và \(x+y=10\)
Ta cs : \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
\(\Leftrightarrow\frac{x}{2}=2\Leftrightarrow x=4\)
\(\Leftrightarrow\frac{y}{3}=2\Leftrightarrow y=6\)
\(c,\frac{x}{2}=\frac{y}{5}\)và \(x+2y=12\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{5}=\frac{x+2y}{2+2.5}=\frac{12}{12}=1\)
\(\Leftrightarrow\frac{x}{2}=1\Leftrightarrow x=2\)
\(\Leftrightarrow\frac{y}{5}=1\Leftrightarrow y=5\)
a)x.y=-2
\(\Rightarrow\)\(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)hoặc \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
b) mik lỡ bấm nhầm câu hỏi kề câu hỏi của bạn
Đây nek : https://olm.vn/hoi-dap/detail/238833793861.html
a) \(\left(x-5\right)\left(2y+1\right)=5=\left(-1\right).\left(-5\right)=\left(-5\right).\left(-1\right)=1.5=5.1\)
Lập bảng giá trị ta có:
\(x-5\) | \(-1\) | \(-5\) | \(1\) | \(5\) |
\(x\) | \(4\) | \(0\) | \(6\) | \(10\) |
\(2y+1\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(y\) | \(-3\) | \(-1\) | \(2\) | \(0\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là: \(\left(4;-3\right)\), \(\left(0;-1\right)\), \(\left(6;2\right)\), \(\left(10;0\right)\)
b) \(\left(x+7\right)\left(2x-y\right)=7=\left(-1\right)\left(-7\right)=\left(-7\right).\left(-1\right)=1.7=7.1\)
Lập bảng giá trị ta có:
\(x+7\) | \(-1\) | \(-7\) | \(1\) | \(7\) |
\(x\) | \(-8\) | \(-14\) | \(-6\) | \(0\) |
\(2x-y\) | \(-7\) | \(-1\) | \(7\) | \(1\) |
\(y\) | \(-9\) | \(-27\) | \(-19\) | \(-1\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là: \(\left(-8;-9\right)\), \(\left(-14;-27\right)\), \(\left(-6;-19\right)\), \(\left(0;-1\right)\)
Tìm cặp số nguyên (x,y) biết:
a)x-1/9+1/3=1/4+2
b)x/5-2/y=2/15
c)x/7-1/2=1/y+1
Toán lớp 6Liên ph
ai tích min tích lại nhà
a. (x-1) (2y+3) = 5
=> 2y+3\(\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta co bang sau:
2y+5
Vay (x;y)\(\left\{\left(-4;-3\right);\left(6;2\right);\left(0;-5\right);\left(2;0\right)\right\}\)
b.\(|x|=5\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vay \(x\in\left\{5;-5\right\}\)
\(\left|y\right|=7\)
\(\Rightarrow\left[{}\begin{matrix}y=7\\y=-7\end{matrix}\right.\)
Vay \(y\in\left\{7;-7\right\}\)
Còn câu c) ạ ?