K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)

13 tháng 1 2019

Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy (x;y) = (3;3)

16 tháng 11 2021

2x+y+3z=6(1)3x+4y−3z=4(2){2x+y+3z=6(1)3x+4y−3z=4(2)

Từ hệ phương điều kiện, ta có:

Lấy (1) + (2) ta được: 5x+5y= 10 ⇒⇒ x+y=2 ⇔⇔ y=2-x (3)

từ(1) ta suy ra y=6-3z-2x thế biểu thức vào phương trình (2) , ta được :

-5x-15z=-20 ⇔⇔ x+3z=4 ⇔⇔ z =43−x343−x3 (4)

thay (4) và (2) vào P ta được :

P= 2x+3y-4z = 2x +3.(2-x)- 4.(43−x343−x3) =2x+6-3x-163+4x3=x3+23163+4x3=x3+23

⇒⇒Min P ⇔⇔ x3x3 đạt GTNN mà 3>0 cố định ⇒⇒ Min P⇔⇔ x đạt GTNN

Mà x >= 0, x là số thực nên Min P = 2323 ,dấu "=" xảy ra khi và chỉ khi :

x=0

Ta có x + y = 2 ⇒⇒ y=2 ; z = 43−x343−x3 ⇒⇒ z =43

Bài 3: 

Gọi bốn số nguyên dương liên tiếp là x,x+1,x+2,x+3

Theo đề, ta có: \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=120\)

\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)=120\)

\(\Leftrightarrow\left(x^2+3x\right)^2+2\left(x^2+3x\right)-120=0\)

\(\Leftrightarrow\left(x^2+3x\right)^2+12\left(x^2+3x\right)-10\left(x^2+3x\right)-120=0\)

\(\Leftrightarrow\left(x^2+3x+12\right)\left(x^2+3x-10\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

mà x là số nguyên dương

nên x=2

Vậy: Bốn số cần tìm là 2;3;4;5