Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\({a_1} = 0;{a_2} = 1;{a_3} = 2;{a_4} = 3;{a_5} = 4\).
\({b_1} = 2.1 = 2;{b_2} = 2.2 = 4;{b_3} = 2.3 = 6;{b_4} = 2.4 = 8\).
\({c_1} = 1;{c_2} = {c_1} + 1 = 1 + 1 = 2;{c_3} = {c_2} + 1 = 2 + 1 = 3;{c_4} = {c_3} + 1 = 3 + 1 = 4\).
+ Chu vi đường tròn có bán kính \(n\) là \({d_n} = 2\pi n\).
Ta có: \({d_1} = 2\pi .1 = 2\pi ;{d_2} = 2\pi .2 = 4\pi ;{d_3} = 2\pi .3 = 6\pi ;{d_4} = 2\pi .4 = 8\pi \).
a) Ta có:
\(\begin{array}{l}\left( P \right)\parallel \left( {{A_1}{A_2}{A_3}...{A_6}} \right)\\ \Rightarrow {A_1}^\prime {A_2}^\prime \parallel {A_1}{A_2},{A_2}^\prime {A_3}^\prime \parallel {A_2}{A_3},{A_3}^\prime {A_4}^\prime \parallel {A_3}{A_4},{A_4}^\prime {A_5}^\prime \parallel {A_4}{A_5},{A_5}^\prime {A_6}^\prime \parallel {A_5}{A_6},{A_6}^\prime {A_1}^\prime \parallel {A_6}{A_1}\\ \Rightarrow \frac{{{A_1}^\prime {A_2}^\prime }}{{{A_1}{A_2}}} = \frac{{{A_2}^\prime {A_3}^\prime }}{{{A_2}{A_3}}} = \frac{{{A_3}^\prime {A_4}^\prime }}{{{A_3}{A_4}}} = \frac{{{A_4}^\prime {A_5}^\prime }}{{{A_4}{A_5}}} = \frac{{{A_5}^\prime {A_6}^\prime }}{{{A_5}{A_6}}} = \frac{{{A_6}^\prime {A_1}^\prime }}{{{A_6}{A_1}}}\end{array}\)
Mà \({A_1}{A_2} = {A_2}{A_3} = {A_3}{A_4} = {A_4}{A_5} = {A_5}{A_6} = {A_6}{A_1}\)
\( \Rightarrow {A_1}^\prime {A_2}^\prime = {A_2}^\prime {A_3}^\prime = {A_3}^\prime {A_4}^\prime = {A_4}^\prime {A_5}^\prime = {A_5}^\prime {A_6}^\prime = {A_6}^\prime {A_1}^\prime \)
Vậy đa giác \({A_1}^\prime {A_2}^\prime {A_3}^\prime ...{A_6}^\prime \) là lục giác đều.
b) Ta có:
\(\left. \begin{array}{l}O' \in {A_1}^\prime {A_4}^\prime \subset \left( {S{A_1}{A_4}} \right)\\O' \in {A_3}^\prime {A_6}^\prime \subset \left( {S{A_3}{A_6}} \right)\\\left( {S{A_1}{A_4}} \right) \cap \left( {S{A_3}{A_6}} \right) = SO\end{array} \right\} \Rightarrow O' \in SO\)
Mà \(S.{A_1}{A_2}{A_3}...{A_6}\) là hình chóp đều \( \Rightarrow SO \bot \left( {{A_1}{A_2}{A_3}...{A_6}} \right)\)
Vậy \(OO' \bot \left( {{A_1}{A_2}{A_3}...{A_6}} \right)\)
Lời giải:
\(C=\lim\limits_{x\to +\infty}\left[x\sqrt[n]{(1+\frac{a_1}{x})(1+\frac{a_2}{x})...(1+\frac{a_n}{x})}-x\right]\)
\(=\lim\limits_{x\to +\infty}x\left[\sqrt[n]{(1+\frac{a_1}{x})(1+\frac{a_2}{x}).....(1+\frac{a_n}{x})}-1\right]\)
\(=\lim\limits _{x\to +\infty}\frac{\sqrt[n]{(1+\frac{a_1}{x})(1+\frac{a_2}{x}).....(1+\frac{a_n}{x})}-1}{(1+\frac{a_1}{x})(1+\frac{a_2}{x})..(1+\frac{a_n}{x})-1}.\frac{(1+\frac{a_1}{x})(1+\frac{a_2}{x})...(1+\frac{a_n}{x})-1}{\frac{1}{x}}\)
\(=\lim\limits _{x\to +\infty}(A.B)=\lim\limits_{x\to +\infty}A.\lim\limits_{x\to +\infty}B\)
Với $A$. Đặt \(\sqrt[n]{\prod_{i=1}^n (1+\frac{a_i}{x})}=u\). \(x\to +\infty\Rightarrow \frac{a_i}{x}\to 0\Rightarrow 1+\frac{a_i}{x}\to 1\Rightarrow u\to 1\)
\(\lim\limits_{x\to +\infty}A=\lim\limits_{u\to 1}\frac{u-1}{u^n-1}=\lim\limits_{u\to 1}\frac{1}{u^{n-1}+...+1}=\frac{1}{n}\)
Với $B$
\(\lim\limits _{x\to +\infty}B=\lim\limits _{x\to +\infty}\frac{1+\frac{a_1+a_2+..+a_n}{x}+\frac{a_1a_2+a_2a_3+...+a_{n-1}a_n}{x^2}+....-1}{\frac{1}{x}}\)
\(=\lim\limits _{x\to +\infty}\left(a_1+a_2+...+a_n+\frac{a_1a_2+...+a_{n-1}a_n}{x}+...\right)=a_1+a_2+..+a_n\)
Do đó: $C=\frac{a_1+a_2+...+a_n}{n}$
Đáp án C
Số tam giác: \(C_{2n}^3=\frac{\left(2n\right)!}{\left(2n-3\right)!.6}=\frac{n\left(2n-1\right)\left(2n-2\right)}{3}\)
Cứ hai đường chéo qua tâm của đa giác đều sẽ đóng vai trò hai đường chéo của hình chữ nhật
Đa giác có \(n\) đường chéo qua tâm \(\Rightarrow C_n^2=\frac{n\left(n-1\right)}{2}\) hình chữ nhật
Ta có pt:
\(\frac{n\left(2n-1\right)\left(2n-2\right)}{3}=10n\left(n-1\right)\)
\(\Leftrightarrow n\left(n-1\right)\left(n-8\right)=0\Rightarrow n=8\)
Tham khảo: