K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2021

a.

\(\Leftrightarrow na_{n+2}-na_{n+1}=2\left(n+1\right)a_{n+1}-2\left(n+1\right)a_n\)

\(\Leftrightarrow\dfrac{a_{n+2}-a_{n+1}}{n+1}=2.\dfrac{a_{n+1}-a_n}{n}\)

Đặt \(b_n=\dfrac{a_{n+1}-a_n}{n}\Rightarrow\left\{{}\begin{matrix}b_1=\dfrac{a_2-a_1}{1}=1\\b_{n+1}=2b_n\end{matrix}\right.\) \(\Rightarrow b_n=2^{n-1}\Rightarrow a_{n+1}-a_n=n.2^{n-1}\)

\(\Leftrightarrow a_{n+1}-\left[\dfrac{1}{2}\left(n+1\right)-1\right]2^{n+1}=a_n-\left[\dfrac{1}{2}n-1\right]2^n\)

Đặt \(c_n=a_n-\left[\dfrac{1}{2}n-1\right]2^n\Rightarrow\left\{{}\begin{matrix}c_1=a_1-\left[\dfrac{1}{2}-1\right]2^1=2\\c_{n+1}=c_n=...=c_1=2\end{matrix}\right.\)

\(\Rightarrow a_n=\left[\dfrac{1}{2}n-1\right]2^n+2=\left(n-2\right)2^{n-1}+2\)

NV
8 tháng 3 2021

b.

Câu b này đề sai

Với \(n=1\Rightarrow\sqrt{a_1-1}=0< \dfrac{1\left(1+1\right)}{2}\)

Với \(n=2\Rightarrow\sqrt{a_1-1}+\sqrt{a_2-1}=0+1< \dfrac{2\left(2+1\right)}{2}\)

Có lẽ đề đúng phải là: \(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}\ge\dfrac{n\left(n-1\right)}{2}\)

Ta sẽ chứng minh: \(\sqrt{a_n-1}\ge n-1\) ; \(\forall n\in Z^+\)

Hay: \(\sqrt{\left(n-2\right)2^{n-1}+1}\ge n-1\)

\(\Leftrightarrow\left(n-2\right)2^{n-1}+2n\ge n^2\)

- Với \(n=1\Rightarrow-1+2\ge1^2\) (đúng)

- Với \(n=2\Rightarrow0+4\ge2^2\) (đúng)

- Giả sử BĐT đúng với \(n=k\ge2\) hay \(\left(k-2\right)2^{k-1}+2k\ge k^2\)

Ta cần chứng minh: \(\left(k-1\right)2^k+2\left(k+1\right)\ge\left(k+1\right)^2\)

\(\Leftrightarrow\left(k-1\right)2^k+1\ge k^2\)

Thật vậy: \(\left(k-1\right)2^k+1=2\left(k-2\right)2^{k-1}+2^k+1\ge2k^2-4k+2^k+1\)

\(\ge2k^2-4k+5=k^2+\left(k-2\right)^2+1>k^2\) (đpcm)

Do đó:

\(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}>0+1+...+n-1=\dfrac{n\left(n-1\right)}{2}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ta có:

\({a_1} = 0;{a_2} = 1;{a_3} = 2;{a_4} = 3;{a_5} = 4\).

\({b_1} = 2.1 = 2;{b_2} = 2.2 = 4;{b_3} = 2.3 = 6;{b_4} = 2.4 = 8\).

 \({c_1} = 1;{c_2} = {c_1} + 1 = 1 + 1 = 2;{c_3} = {c_2} + 1 = 2 + 1 = 3;{c_4} = {c_3} + 1 = 3 + 1 = 4\).

+ Chu vi đường tròn có bán kính \(n\) là \({d_n} = 2\pi n\).

Ta có: \({d_1} = 2\pi .1 = 2\pi ;{d_2} = 2\pi .2 = 4\pi ;{d_3} = 2\pi .3 = 6\pi ;{d_4} = 2\pi .4 = 8\pi \).

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

a, Quy luật: Mỗi số hạng kể từ số thứ hai bằng số hạng đứng trước nó chia cho 2.

Vậy ba số hạng tiếp theo là: \(a_5=1;a_6=\dfrac{1}{2};a_7=\dfrac{1}{4}\)

b, Các số hạng của dãy số có dạng \(2^n\) với số mũ của số liền sau ít hơn số mũ của số liền trước 1 đơn vị.

Vậy ta có thể viết ba số hạng tiếp theo là: \(a_5=a^0;a_6=a^{-1};a_7=a^{-2}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Ta có: \({a_{n + 1}} = 3\left( {n + 1} \right) + 1 = 3n + 3 + 1 = 3n + 4\)

Xét hiệu: \({a_{n + 1}} - {a_n} = \left( {3n + 4} \right) - \left( {3n + 1} \right) = 3n + 4 - 3n - 1 = 3 > 0,\forall n \in {\mathbb{N}^*}\)

Vậy \({a_{n + 1}} > {a_n}\).

a) Ta có: \({b_{n + 1}} =  - 5\left( {n + 1} \right) =  - 5n - 5\)

Xét hiệu: \({b_{n + 1}} - {b_n} = \left( { - 5n - 5} \right) - \left( { - 5n} \right) =  - 5n - 5 + 5n =  - 5 < 0,\forall n \in {\mathbb{N}^*}\)

Vậy \({b_{n + 1}} < {b_n}\).

19 tháng 11 2023

 Xét câu A, hiển nhiên khi \(n\rightarrow+\infty\) thì \(a_n=\sqrt{n^3+n}\rightarrow+\infty\) nên dãy (an) không bị chặn.

 Ở câu C, lấy n chẵn và cho \(n\rightarrow+\infty\) thì dãy (cn) cũng sẽ tiến tới \(+\infty\). Do đó dãy (cn) cũng là 1 dãy không bị chặn.

 Ở câu B, ta xét hàm số \(f\left(x\right)=x^2+\dfrac{1}{x}\) trên \(\left[1;+\infty\right]\), ta thấy \(f'\left(x\right)=2x-\dfrac{1}{x^2}\) \(=\dfrac{2x^3-1}{x^2}\) \(=\dfrac{x^3+x^3-1}{x^2}>0,\forall x\ge1\) . Do đó \(f\left(x\right)\) đồng biến trên \(\left[1;+\infty\right]\) và do đó cũng đồng biến trên \(ℕ^∗\). Nói cách khác, (bn) là dãy tăng . Như vậy, nếu bn bị chặn thì tồn tại giới hạn hữu hạn. Giả sử \(\lim\limits_{n\rightarrow+\infty}b_n=L>1\). Chuyển qua giới hạn, ta được \(L=\lim\limits_{n\rightarrow+\infty}\left(n^2+\dfrac{1}{n}\right)=+\infty\), vô lí. Vậy (bn) không bị chặn trên.

 Còn lại câu D. Ta thấy với \(n\inℕ^∗\) thì hiển nhiên \(d_n>0\). Ta thấy \(d_n=\dfrac{3n}{n^3+2}=\dfrac{3n}{n^3+1+1}\le\dfrac{3n}{3\sqrt[3]{n^3.1.1}}=1\), với mọi \(n\inℕ^∗\). Vậy, (dn) bị chặn 

 \(\Rightarrow\) Chọn D.

 

17 tháng 11 2023

Chọn C

17 tháng 11 2023

Chọn C