\(\left(x+y\right)^2=\left(x-1\right)\left(y+1\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

Bài này cũng không khó lắm:

Đặt \(x-1=a\) và \(y+1=b\). Khi đó \(a+b=x+y\). Theo đề bài ta có:

\(\left(a+b\right)^2=ab\Leftrightarrow a^2+ab+b^2=0\Leftrightarrow\left(a+\frac{b}{a}\right)^2+\frac{3b^2}{4}=0\Leftrightarrow a=b=0\)

Vậy \(x=1;y=-1\)

30 tháng 7 2017

sorry, viết nhầm chỗ b/a nhá phải là b/4

2 tháng 3 2020

Bài 2: 

Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)

\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)

Tìm GTNN: 

 Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)

\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)

\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)

Chúc bạn học tốt.

16 tháng 3 2020

Làm bài 1 ha :) 

Áp dụng BĐT Cô si ta có:

\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)

Khi đó:

\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

Giống Holder ghê vậy ta :D

DD
16 tháng 5 2021

\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)

Từ đây bạn xét các trường hợp và giải ra nghiệm. 

25 tháng 3 2017

Đặt: \(E=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Ta có: \(F-E=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)

\(\Leftrightarrow F=E\)

Từ đó ta có:

\(2F=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\frac{\left(x^2+y^2\right)}{2\left(x+y\right)}+\frac{\left(y^2+z^2\right)}{2\left(y+z\right)}+\frac{\left(z^2+x^2\right)}{2\left(z+x\right)}\)

\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)

\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)

\(\Rightarrow F\ge\frac{1}{4}\)

Dấu = xảy ra khi \(x=y=z=\frac{1}{3}\)

25 tháng 3 2017

Bạn ơi, cho mình hỏi này

Sao có \(\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\)  và sao có  \(\frac{\left(x^2+y^2\right)}{2}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}\)  

Giải đáp tận tình hộ mình nhé.

28 tháng 4 2017

pt tương đương x^2y^2+x^2+y^2+y^2-4xy^2=0 

x^2y^2-2xy^2+y^2+x^2-2xy^2+y^4=0

(xy-y)^2+(x-y^2)^2=0 

suy ra xy-y=0 và x-y^2=0 

y(x-1)=0 và x=y^2 

TH1 y=0 suy ra x=0

TH2 x-1=0 hay x=1 suy ra y=1 hoặc y=-1 

các cặp (x,y) thỏa mãn đề bài là (0,0);(1,1);(1;-1) 

31 tháng 3 2019

Bài này chỉ vận dụng phân tích đa thức thành nhân tử thôi

Có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=6xyz\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-xz\right)=6xyz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=3xyz\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=3xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=3xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^2+y^3+z^3=3xyz\left(x+y+z+1\right)\)

Do đó: \(x^3+y^3+z^3+1=3xyz\left(x+y+z+1\right)+1⋮x+y+z+1\)

Suy ra: \(1⋮x+y+z+1\)

 \(\Rightarrow x+y+z+1=1\)( do \(x,y,z\ge0\Rightarrow x+y+z+1\ge1\))

\(\Leftrightarrow x=y=z=0\)

Vậy \(x=y=z=0\)

19 tháng 8 2018

Mang hết bài tập lên hỏi à, sao nhiều thế

19 tháng 8 2018

Ơ thế liên quan l đến cậu à Thành? Hay nên gọi là Thánh chứ nhỉ? :) Có ai khiến cậu trả lời không mà kêu lắm :> Đấy là bài tập chỗ học thêm bên ngoài, đ' làm được thì lên hỏi thắc mắc làm l gì :> Đ' hỏi bài tập ở lớp thì thôi đừng ngồi chõ mồm vào :>

4 tháng 11 2017

Cô Huyền giải nhầm rồi.

\(\left(x+1\right)^4-\left(y+1\right)^2=y^2-x^4\)

\(\Leftrightarrow y^2+\left(y+1\right)^2=x^4+\left(x+1\right)^4\)

\(\Leftrightarrow y^2+y=x^4+2x^3+3x^2+2x\)

\(\Leftrightarrow y^2+y+1=\left(x^2+x\right)^2+2\left(x^2+x\right)+1=\left(x^2+x+1\right)^2\)là số chính phương

Xét \(y\ge0\)

\(\Rightarrow y^2< y^2+y+1\le\left(y+1\right)^2\)

\(\Rightarrow y^2+y+1=\left(y+1\right)^2\)

\(\Leftrightarrow y=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Tương tự cho trường hợp còn lại

3 tháng 11 2017

\(\left(x+1\right)^4-\left(y+1\right)^2=y^2-x^4\)

\(\Leftrightarrow x^4+2x^2+1-y^2-2y-1=y^2-x^4\)\(\Leftrightarrow2x^4+2x^2-2y^2-2y=0\)

\(\Leftrightarrow x^4+x^2-y^2-y=0\Leftrightarrow\left(x^4-y^2\right)+\left(x^2-y\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(x^2+y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-y=0\\x^2+y+1=0\end{cases}}\)

TH1: y = x2 . Vậy ta có cặp (x;y) thỏa mãn là (k; k2) (k là số nguyên)

TH2: y = - x2 - 1. Vậy ta có cặp (x;y) thỏa mãn là (k; - k2 - 1) (k là số nguyên)

Ta có:

\(\frac{x}{1+x^2}+\frac{18y}{1+y^2}+\frac{4z}{1+z^2}=xyz\left(\frac{1}{yz\left(1+x^2\right)}+\frac{18}{xz\left(1+y^2\right)}+\frac{4}{xy\left(1+z^2\right)}\right)\)

                                                         \(=xyz\left(\frac{1}{yz+x\left(x+y+z\right)}+\frac{18}{xz+y\left(x+y+z\right)}+\frac{4}{xy+z\left(x+y+z\right)}\right)\)

                                                          \(=xyz\left(\frac{1}{\left(x+y\right).\left(x+z\right)}+\frac{18}{\left(y+x\right).\left(y+z\right)}+\frac{4}{\left(z+x\right).\left(z+y\right)}\right)\)

                                                           \(=xyz.\frac{\left(z+y\right)+18.\left(x+z\right)+4\left(x+y\right)}{\left(x+y\right).\left(y+z\right).\left(z+x\right)}\)

                                                           \(=\frac{xyz\left(22x+5y+19z\right)}{\left(x+y\right).\left(y+z\right).\left(z+x\right)}\)(đpcm)