Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x_1}{a_1}=\dfrac{x_2}{a_2}=...=\dfrac{x_n}{a_n}=\dfrac{x_1+x_2+...+x_{n-1}+x_n}{a_1+a_2+...+a_{n-1}+a_n}\)
\(=\dfrac{c}{a_1+a_2+...+a_n}\)
Suy ra:
\(x_1=\dfrac{a_1.c}{a_1+a_2+...+a_n}\)
\(x_2=\dfrac{a_2.c}{a_1+a_2+...+a_n}\)
.........................................
\(x_n=\dfrac{a_n.c}{a_1+a_2+...+a_n}\)
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=.....=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=.....=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=\frac{a_1+a_2+....+a_n}{a_2+a_3+....+a_n+a_1}=1\)
=> a1 = a2
a2 = a3
.........
an - 1 = an
an = a1
=> a1 = a2 = a3 = ....... = an - 1 = an
MÀ \(a_1=-\sqrt{5}\)
=> a1 = a2 = a3 = ....... = an - 1 = an = \(-\sqrt{5}\)
1.
Ta có: \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)
\(\Rightarrow\frac{1}{2}a.\frac{1}{6}=\frac{2}{3}b.\frac{1}{6}=\frac{3}{4}c.\frac{1}{6}\)
\(\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)
\(\Rightarrow\hept{\begin{cases}a=5.12=60\\b=5.9=45\\c=5.8=40\end{cases}}\)
Vậy \(\hept{\begin{cases}a=60\\b=45\\c=40\end{cases}}\)
2. Đặt \(a_1+a_2+...+a_n=d\)
ÁP dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x_1}{a_1}=\frac{x_2}{a_2}=...=\frac{x_n}{a_n}=\frac{x_1+x_2+...+x_n}{a_1+a_2+...+a_n}=\frac{c}{d}\)
\(\Rightarrow x_1=\frac{c}{d}.a_1;x_2=\frac{c}{d}.a_2;....;x_n=\frac{c}{d}.a_n\)
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x_1}{a_1}=\frac{x_2}{a_2}=\frac{x_3}{a_3}=...=\frac{x_n}{a_n}=\frac{x_1+x_2+...+x_n}{a_1+a_2+...+a_{n}}\)
\(=\frac{c}{a_1+a_2+...+a_n}\)
Do đó:
\(\left\{\begin{matrix} x_1=\frac{ca_1}{a_1+a_2+....+a_n}\\ x_2=\frac{ca_2}{a_1+a_2+....+a_n}\\ x_3=\frac{ca_3}{a_1+a_2+...+a_n}\\ ...\\ x_n=\frac{ca_n}{a_1+a_2+..+a_n}\end{matrix}\right.\)
Tóm lại : \(x_i=\frac{ca_i}{a_1+a_2+...+a_n}\) với \(i=1,2,3,...,n\)