Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)
Vậy x = 45; y = 60; z = 84
b) Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)
\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)
Thay (1) vào (+) ta được :
\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)
\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)
Thay (2) và (+2) ta được :
\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)
\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)
Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)
Mà \(xyz=810\Rightarrow30k^3=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
Thay vào tìm x,,z.
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tĩ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)
Suy ra
x = (-2) . 9 = -18
y = (-2) . 12 = -24
z = (-2) . 15 = -30
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra
x = 2 . 10 = 20
y = 2 . 6 = 12
z = 2 . 21 = 42
https://olm.vn/hoi-dap/question/148595.html
vào đấy tham khảo nhé
^_^
c) \(4x=3y;7y=5z\)và\(2x+3y-z=186\)
\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{15}=\frac{x}{20}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất Bắc Cầu
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2z+3y-z}{30+60-28}=\frac{186}{62}=3\)
Vậy x=45;y=60;z=84
1/ Ta có xy=-6
Với x=-6 => y=1
x=-3 => y=2
x= -2 => y=3
x=-1 => y=6
2/ Ta có x=y+4
Thay x=y+4 vào bt, ta được
<=> y+4-3/y-2 =3/2
<=> y+1/y-2=3/2
<=> 2(y+1)=3(y-2)
<=> 2y +2 = 3y - 6
<=> 3y - 2y= 2+ 6
<=> y= 8 <=> x= 12
3/ -4/8 = x/-10 <=> x= (-4)*(-10)/8=5
-4/8 = -7/y <=> y=(-7)*8/(-4) =14
-4/8 = z/-24 <=> z= (-4)*(-24)/8=12
\(\frac{x}{y}=\frac{5}{2}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{2}\)
áp dụng t\c của dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{15}{3}=5\)
\(\Rightarrow\hept{\begin{cases}x=5\cdot5=25\\y=5\cdot2=10\end{cases}}\)
Ta có: x/y=5/2 và x—y=15
==> x/5=y/2 và x—y=15
Áp Dụng tính chất dãy tỉ số bằng nhau, ta có
x/5=y/2= x—y/5–2=15/3=5
Ta được: x=5.5=25
y=5.2=10
b)Ta có:x/9=y/2 và x—3y=18
Áp Dụng tính chất dãy tỉ số bằng nhau, ta có:
x/9=y/2=x/9=3y/6=x—3y/9–6=18/3=6
Ta được: x= 9.6=54
y=2.6=12
c) Ta có: x/7=y/5=z/2 và x—y+z=—40
Áp Dụng dính chất dãy tỉ số bằng nhau, ta có:
x/7=y/5=z/2= x—y+z/7–5+2= —40/ 4=—10
Ta được: x= 7.(—10)=—70
y= 5.(—10)=—50
z= 2.(—10)=—20
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{3}=\frac{3y}{15}=\frac{z}{7}=\frac{x-3y+z}{3-15+7}=\frac{-80}{-5}=16\)
Khi đó : \(\frac{x}{3}=16\Rightarrow x=48\)
\(\frac{y}{5}=16\Rightarrow y=80\)
\(\frac{z}{7}=16\Rightarrow z=112\)
Vậy \(x=48;y=80;z=112\)
Ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x}{7}\Rightarrow\frac{x}{3}=\frac{3y}{15}=\frac{z}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{3y}{15}=\frac{z}{7}=\frac{x-3y+z}{3-15+7}=\frac{x-3y+z}{-5}\)
Mà \(x-3y+z=-80\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{-80}{-5}=16\)
+) \(\frac{x}{3}=16\Rightarrow x=48\)
+) \(\frac{y}{5}=16\Rightarrow y=80\)
+) \(\frac{z}{7}=16\Rightarrow z=112\)
Vậy x = 48 ; y = 80 ; z = 112