Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2016^z+2017^y=2018^x\)
\(\text{TH1 : z = 0}\)
\(\Leftrightarrow2016^0+2017^y=2018^x\)
\(\Leftrightarrow1+2017^y=2018^x\)
\(\Leftrightarrow y=1;x=1\)
\(\text{TH2 : y = 0}\)
\(\Leftrightarrow2016^z+2017^0=2018^x\)
\(\Leftrightarrow2016^z+1=2018^x\)
\(\text{Vế trái là số lẻ }\Leftrightarrow x\ge1\)
\(\text{Vế phải là số chẵn }\Leftrightarrow x\ge1\)
\(\Rightarrow\text{TH2 bị loại}\)
\(\text{TH3 : }x,y,z\ne0\)
\(\Leftrightarrow2016^z+2017^y\text{ là số lẻ}\)
\(\Leftrightarrow2018^x\text{ là số chẵn}\)
\(\Rightarrow\text{TH3 bị loại}\)
\(\text{Vậy x = 0 ; y = 1 ; z = 1}\)
Gợi ý: 2017y là số lẻ
2016z và 2018x là số chẵn trừ khi x=0 ; z=0
Mà 2018x= 2017y + 2016z
=> y=0
=> 2018x=2016z+1
Mặt khác 2018x >= 2016z
Dấu bằng xảy ra <=> x=0;z=0
Thử lại: 1 = 2 vô lí
Vậy không có x;y;z; là số tự nhiên thỏa mãn
Nhận xét: 6x2 và 2014 là số chẵn nên 35y2 cũng chẵn → y2 chẵn → y chẵn
Mặt khác: Từ 6x2 + 35y2 = 2014 nên 35y2 ≤ 2014 → y2 ≤ 58
Vậy y có thể nhận các giá trị: 0; 1; 2; 3; 4; 5; 6; 7.
Do y chẵn nên y có thể nhận các giá trị: 0; 2; 4; 6
Thay lần lượt các giá trị có thể nhận của y đề không tìm được giá trị của x.
Kết luận: Không tìm được các số tự nhiên x; y thoả mãn: 6x2 + 35y2 = 2014
Ta thấy :2xy chia hết cho 2 ;100 chia hết cho 2 nên suy ra được : x2 chia hết cho 2 suy ra x chia hết cho 2
Đặt x =2(t) thay vào ta được
(2)2 + 2.(2t)y =100
4t2 + 4ty = 100
t2 + ty =25
t(t+y) = 25
mà t t + y và 25 chia hết cho t ; t +y
TH1:+) t < t + y thì
t = 1 ; t + y = 25
với t =1 tìm được x = 2 ; y = 24
TH2 +) t = t + y thì y = 0
suy ra t = 5 ; x = 10
Vậy x =2 ; y = 24 hoặc x = 10 ; y = 0
a,A=3+32+33+34+...+31003A=32+33+34+35+31013A−A=2A=3101−3⇒2A+3=3101=34.25+1⇒n=25
Bài giải
Giả sử x,y thuộc N*
Suy ra 4x + 215 = 6y (x,y thuộc N*)
Mà 4x (x thuộc N*) là một số chẵn, 215 là một số lẻ và 6y (y thuộc N*) là một số chẵn nên nếu như 4x và 6y với x,y thuộc N* thì điều đó là impossible.
Ta xét: 6y có số mũ là 0 (nghĩa là 60) suy ra 6y = 60 = 1
Mà 1 < 215 + 4x (4x là số tự nhiên) nên điều đó cũng impossible
Suy ra chỉ có một trường hợp luôn đúng đó là 4x = 40 => x = 0
Thay vào, ta có:
215 + 40 = 215 + 1 = 6y
Nếu 215 + 1 = 6y thì ta có:
216 = 6y
63 = 6y
Suy ra y = 3
Vậy x = 0 và y = 3