Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x+1}.3^y=12^x\Leftrightarrow2^x.2.3^y=12^x\Leftrightarrow2.3^y=6^x\Leftrightarrow2.3^y=2^x.3^x\)
Xét y=0 \(\Rightarrow2.3^0=6^x\Leftrightarrow2=6^x\) (pt vô nghiệm)
Xét y=1 \(\Rightarrow6=6^x\Leftrightarrow x=1\)
Xét \(y\ge2\Rightarrow x>1\)
\(\Leftrightarrow3^y=2^{x-1}.3^x\) (VT không chia hết cho 2, VP chia hết cho 2 suy ra vô lí)
Ta có: 2x + 1 . 3y = 12x
=> 2x.2.3y = 12x
=> 2.3y = 12x : 2x
=> 2.3y = 6x
=> 2.3y = 2x . 3x
=> x = 1
=> y = x
=> y = 1
Ta có: 2x + 1 . 3y = 12x
=> 2x.2.3y = 12x
=> 2.3y = 12x : 2x
=> 2.3y = 6x
=> 2.3y = 2x . 3x
=> x = 1
=> y = x
=> y = 1
Vậy .....
Tk mik va ket ban voi mik nha
Ta có :
\(2^{x+1}.3^y=12^x\)
\(\Rightarrow2^{x+1}.3^y=\left(2^2.3\right)^x=2^{2x}.3^x\) \(\left(1\right)\)
Đồng nhất hai vế của đẳng thức \(\left(1\right)\) , ta có :
\(\begin{cases}2^{x+1}=2^{2x}\\3^y=3^x\end{cases}\)
\(\Rightarrow\begin{cases}x+1=2x\\x=y\end{cases}\)
\(\Rightarrow\begin{cases}x=1\\x=y\end{cases}\)
\(\Leftrightarrow x=y=1\)
Vậy : \(x=y=1\)
Ta có :
2x+1.3y=12x2x+1.3y=12x
⇒2x+1.3y=(22.3)x=22x.3x⇒2x+1.3y=(22.3)x=22x.3x (1)(1)
Đồng nhất hai vế của đẳng thức (1)(1) , ta có :
{2x+1=22x3y=3x{2x+1=22x3y=3x
⇒{x+1=2xx=y