Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a, thương lần lượt khi chia cho 5 và 7 là x,y ta có:
a = 5x+1 ; a=7y+1
=> a-1 = 5x ; a-1 = 7y
Vậy a-1 thuộc BC(5;7)
BCNN(5;7) = 35
=> BC(5;7) = 0;35;70;105;140;....;980;1015;1050;....
Vì a là số tự nhiên nhỏ nhất có 4 chữ số nên a-1 = 1015
=> a = 1016
Answer:
Có \(ƯCLN\left(2y+5;3y+2\right)=x\) nên có:
\(\hept{\begin{cases}2y+5⋮x\\3y+2⋮x\end{cases}}\Rightarrow3\left(2y+5\right)-2\left(3y+2\right)⋮x\Rightarrow11⋮x\Rightarrow x\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Mà x > 10 => x = 11
Với x = 11, lại có y < 30
\(\Rightarrow2y+5< 65;2y+5⋮11\)
Các số bé hơn 65 và chia hết cho 11 là: 22; 33; 44; 55 và 3y + 2 cũng chia hết cho 11
Trường hợp 1: \(2y+5=11\)
\(\Rightarrow y=3\)
\(\Rightarrow3y+2=11⋮11\) (Thoả mãn)
Trường hợp 2: \(2y+5=22\)
\(\Rightarrow2y=17\) (Loại)
Trường hợp 3: \(2y+5=33\)
\(\Rightarrow y=14\)
\(\Rightarrow3y+2=44⋮11\) (Thoả mãn)
Trường hợp 4: \(2y+5=44\)
\(\Rightarrow2y=39\) (Loại)
Trường hợp 5: \(2y+5=55\)
\(\Rightarrow y=25\)
\(\Rightarrow3y+2=77⋮11\) (Thoả mãn)
Vậy x = 11 và \(y\in\left\{3;14;25\right\}\)
Gọi số phải tìm là a. Do a chia cho 5 thiếu 1 nên a tận cùng bằng 4 hoặc 9.
Do a chia cho 2 dư 1 nên a tận cùng bằng 9
Xét các bội của 7 có tận cùng bằng 9, ta có:
7.7=49, đúng (chia cho 2 dư 1, chia cho 3 dư 1, chia cho 5 thiếu 1)
7.17=119, chia cho 3 dư 2, loại
7.27=189, chia hết cho 3, loại
7.37=259, lớn hơn 200, loại
Vậy SCT là 49
Gọi số phải tìm là a. Do a chia cho 5 thiếu 1 nên a tận cùng bằng 4 hoặc 9.
Do a chia cho 2 dư 1 nên a tận cùng bằng 9
Xét các bội của 7 có tận cùng bằng 9, ta có:
7.7=49, đúng (chia cho 2 dư 1, chia cho 3 dư 1, chia cho 5 thiếu 1)
7.17=119, chia cho 3 dư 2, loại
7.27=189, chia hết cho 3, loại
7.37=259, lớn hơn 200, loại
Vậy SPT là 49.
Gọi số phải tìm là a. Do a chia cho 5 thiếu 1 nên a tận cùng bằng 4 hoặc 9.
Do a chia cho 2 dư 1 nên a tận cùng bằng 9
Xét các bội của 7 có tận cùng bằng 9, ta có:
7.7=49, đúng (chia cho 2 dư 1, chia cho 3 dư 1, chia cho 5 thiếu 1)
7.17=119, chia cho 3 dư 2, loại
7.27=189, chia hết cho 3, loại
7.37=259, lớn hơn 200, loại
Vậy x = 49
mk cho bài kham khảo nha :
a, (2n+7)/(n+1)=(2(n+1)+5)/(n+1)=2+5/(n+1)
Để (2n+7) chia hết (n+1) thì 5 chia hết cho n+1 hay n+1 là ước của 5
=>n+1 € {-5, -1 ,1, 5}
=>n € {-6,-2, 0,4}
Do n là STN=> n €{0,4}
b , n+2 chia hết cho (7-n) =>(n+2)(2-n) chia hết cho (7-n)
hay 4-n^2 chia hết cho 7-n => (4-n^2)/(7-n)=(49-n^2-45)/(7-n)
=>((7-n)(7+n)-45)/(7-n)=(7+n)-45/(7-n)
(n+2) chia hết (7-n) thì 45 chia hết cho (7-n)
=>7-n € {-45 ,-9, -5,-3,-15,-1,1,3,9,15,45}
=>n € {52,16,12,20,8,6,4,-2,-8,-38}
Do n là STN => n €{4,6,8,12,16,20,52}
:D