Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kết quả là 8338 đúng nhưng cũng phải giải ra rõ ràng chứ
Ta có: abc = 100 . a + 10 . b + c = n2 - 1 (1)
cbd = 100 . c + 10 . b + a = n2 - 4n + 4 (2)
Lấy (1) - (2) ta được: 99 . (a - c) = 4n - 5
=> 4n - 5 chia hết cho 99
Vì:
100 =< abc =< 999 nên:
100 =< n2 - 1 =< 999 => 101 =< n2 =< 1000 => 11 =< 31 => 39 =< 4n - 5 =< 119
Vì: 4n - 5 chia hết cho 99 nên 4n - 5 = 99 => n = 26 => abc = 675 (thỏa, mãn yêu cầu của đề bài)
P/s: dấu =< này là bé hơn hoặc bằng nhé
2x + 12 + 3 . ( 7 - x )= - 23
2x + 12 + 21 - 3x = - 8
2x - 3x = - 8 - 12 - 21
-x = -41
x = 41
Vậy x = 41
b:ab=a+b^2
a.10+b=a+b.b
a.9+b=b.b
Vì a.9 :hết 9 suy ra b :9 suy ra b=9
nếu b=9 thì a.9+9=9.9
a.9+9=81
a.9=81-9
a.9=72
a=72:9=8
vậy a=8 và b=9
Vì c là chữ số tận cùng của m
=>c có chữ số tận cùng là 0 hoặc 5
Mà m có 101 số hạng
=>c có chữ số tận cùng là 5
Ta có:
abcd=1000.a+100.b+10c+d
Mà 1000.a và 100.b đều chia hết cho 25
=>10.c+d phải chia hết cho 25
=>50+d phải chia hết cho 5
Mà d là số có một chữ số =>d=0
Ta có:
ab=a+b2
10a+b=a=b2
9a=b2-b
9a=b.(b-1)
Vì 9a chia hết cho 9
=>b.(b-1) phải chia hết cho 9
=>b=9 (Vì b là số có một chữ số)
=>a=8
Vậy số tự nhiên có 4 chữ số abcd thỏa mãn các điều kiện trên là: 8950.
Chúc bạn làm bài kiểm tra tốt. Mình cũng không chắc cho lắm nhưng mình thấy cũng tạm được, chỉ mỗi tội hơi dài. Chữ "chia hết" bạn nên dùng kí hiệu.
k cho mình với nha!
OK!
Bài 1:
Xét 2 TH :
1) p chẵn :
p là số nguyên tố chẵn nên nó chỉ có thể là 2, nhưng 2 không thể là tổng 2 số nguyên tố vì 2 là số nguyên tố nhỏ nhất ---> TH 1 không có số nào.
2) p lẻ :
Giả sử p = m+n (m,n là số nguyên tố).Vì p lẻ ---> trong m và n có 1 lẻ, 1 chẵn
Giả sử m lẻ, n chẵn ---> n = 2 ---> p = m+2 ---> m = p-2 (1)
Tương tự, p = q-r (q,r là số nguyên tố).Vì p lẻ ---> trong q và r có 1 lẻ, 1 chẵn
Nếu q chẵn ---> q = 2 ---> p = 2-r < 0 (loại)
---> q lẻ, r chẵn ---> r = 2 ---> p = q - 2 ---> q = p+2 (2)
(1),(2) ---> p-2 ; p ; p+2 là 3 số nguyên tố lẻ (3)
+ Nếu p < 5 ---> p-2 < 3 ---> p-2 không thể là số nguyên tố lẻ
+ Nếu p = 5 ---> (3) thỏa mãn ---> p = 5 là 1 đáp án.
+ Nếu p > 5 :
...Khi đó p-2; p; p+2 đều lớn hơn 3
...- Nếu p-2 chia 3 dư 1 thì p chia hết cho 3 ---> p ko phải số nguyên tố (loại)
...- Nếu p-2 chia 3 dư 2 thì p+2 chia hết cho 3 ---> p+2 ko phải số n/tố (loại)
Vậy chỉ có 1 đáp án là p = 5.