K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2021

giả sử \(3^n+63=k^2\)

- Nếu n lẻ \(\Rightarrow3^n+63\equiv3+63\equiv2\left(mod4\right)\Rightarrow k^2\equiv2\left(mod4\right)\) (loại)

Đặt n=2m ( \(m\inℕ\)

- Nếu n chẵn \(\Rightarrow k^2-3^{2m}=63\Leftrightarrow\left(k-3^m\right)\left(k+3^m\right)=7.9\)

Vì \(k+3^m=k-3^m\left(mod3\right)\Rightarrow k+3^m,k-3^m\) đều chia hết cho 3

Lại có: \(k-3^m< k+3^m\Leftrightarrow\hept{\begin{cases}k-3^m=3\\k+3^m=3.7\end{cases}}\)

Từ đó tìm đc k=12, m=2 => n=4

7 tháng 8 2019

 Với n = 1 thì \(n^2-n+2=2\) không là số chính phương.

Với n = 2 thì \(n^2-n+2=4\)là số chính phương

Với n > 2 thì \(n^2-n+2\)không là số chính phương vì :

\((n-1)^2< n^2-(n-2)< n^2\)

2 tháng 12 2019

Mình quên, là số nguyên tố mới đúng

18 tháng 10 2018

hình như sai đề phải là 2^8 chứ

18 tháng 10 2018

đề là như thế đấy, bạn cứ gửi bài giải theo đề của bạn cho mk tham khảo cũng được

13 tháng 10 2019

411111111