Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên đó là n thì n + 42 chia hết cho cả 130 và 150 do đó n + 42 : (130;150).
Ta có:130 = 2.5.13;150 = 2.3.52=>(130;150)=2.3.52.13=1950
=> n + 42 :1950
Mà n là số có bốn chữ số nên
n + 42 ∈ {1950;3900;5850;7800;9750}<=>n ∈ {1908;3858;5808;7758;9708}
Chúc học tốt!
a) ta có:
4x + 3y chia hết cho 7
=> 4 (4x + 3y) chia hết cho 7
=> 16x + 12y chia hết cho 7
=> 14x + 7y + 2x + 5y chia hết cho 7
mà 14x + 7y = 7 ( 2x + y) chia hết cho 7
nên 2x+ 5y chia hết cho 7
b) gọi số phải tìm là a
ta có: a + 42 chia hết cho 130, 150 nên a + 42 là bội chung (130, 150)
vậy a = 1908: 3858; 5808; 7758; 9708
đúng nhé
Goi số tự nhiên đó là \(n\)thì \(n+42\)chia hết cho cả \(130\)và \(150\)do đó \(n+42⋮\left[130,150\right]\).
Ta có: \(130=2.5.13,150=2.3.5^2\Rightarrow\left[130,150\right]=2.3.5^2.13=1950\)
Suy ra \(n+42⋮1950\).
Mà \(n\)là số có bốn chữ số nên \(n+42\in\left\{1950;3900;5850;7800;9750\right\}\Leftrightarrow n\in\left\{1908;3858;5808;7758;9708\right\}\).
gọi số đó là a ( a thuộc N , a lớn hơn hoặc = 3) => a-2 chia hết cho 3;4;5;6 hay a-2 thuộc BC (3;4;5;6)
=> BCNN(3;4;5;6) = 2^2.3.5 = 60 nên BC(3;4;5;6) = { 0 ; 60 ; 120;180;...}
=> a thuộc { 2;62;122;182;..}
ta thấy 122 là số nhỏ nhất chia 7 dư 3 trong tập hợp trên nên: số đó là 122
Vậy số cần tìm là số 122
tk mk nha
Gọi số phải tìm là a .
Ta có a + 42 chia hết cho 130 và 150
=>a + 42 là BC(130,150)
=> a = 1908; 3858 ;5808; 7758; 9708
Gọi số đó là A
Ta có:
a chia 130 dư 88
a chia 150 sư 108
=>a+42 chia hết cho 130 và 150
Số nhỏ nhất có 8 chữ số chia hết cho 130 và 150 là 10001550
A là: 10001550 -42=10001508
Gọi số đó là a , ta có :
a : 11 dư 7 -> a - 7 chia hết 11 ( 1 )
a : 13 dư 7 -> a - 7 chia hết 13 ( 2 )
a :17 dư 7 -> a - 7 chia hết 17 ( 3 )
Từ (1) , (2) , (3) -> a - 7 thuộc BC(11,13,17 ) (A)
Vì 11 ,13 , 17 nguyên tố cùng nhau nên BCNN(11,13,17)= 11.13.17 = 2431 (B)
Từ (A) và (B) -> a - 7 thuộc { 0 ; 2431 ; 4862 ; 9724 ; 19448 ; .... }(C)
Mà a là số lớn nhất có 4 chữ số (D)
Từ (C) và (D) -> a = 9724
Vậy số cần tìm là 9724
Goi số tự nhiên đó là \(n\)thì \(n+42\)chia hết cho cả \(130\)và \(150\)do đó \(n+42⋮\left[130,150\right]\).
Ta có: \(130=2.5.13,150=2.3.5^2\Rightarrow\left[130,150\right]=2.3.5^2.13=1950\)
Suy ra \(n+42⋮1950\).
Mà \(n\)là số có bốn chữ số nên \(n+42\in\left\{1950;3900;5850;7800;9750\right\}\Leftrightarrow n\in\left\{1908;3858;5808;7758;9708\right\}\).