Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo ở đây :
Tìm số nguyên tố p sao cho 2^p + p^2 cũng là số nguyên tố.? | Yahoo Hỏi & Đáp
tham khảo
Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số.
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố.
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số.
Vậy p = 3.
2.
Giả sử f(x) chia cho 1 - x^2 được thương là g(x) và dư là r(x). Vì 1 - x^2 có bậc là 2 nên r(x) có bậc tối đa là 1, suy ra r(x) = ax + b. Từ đó f(x) = (1 - x^2)g(x) + ax + b, suy ra f(1) = a + b và f(-1) = -a + b; hay a + b = 2014 và -a + b = 0, suy ra a = b = 1007.
Vậy r(x) = 1007x + 1007.
3.
Với a,b > 0, dùng bất đẳng thức CauChy thì có
(a + b)/4 >= can(ab)/2 (1),
2(a + b) + 1 >= 2can[2(a + b)].
Dùng bất đẳng thức Bunhiacopski thì có
can[2(a + b)] >= can(a) + can(b);
thành thử
2(a + b) + 1 >= 2[can(a) + can(b)] (2).
Vì các vế của (1) và (2) đều dương nên nhân chúng theo vế thì có
[(a + b)/4][2(a + b) + 1] >= can(ab)[can(a) + can(b)],
hay
(a + b)^2/2 + (a + b)/4 >= acan(b) + bcan(a).
Dấu bằng đạt được khi a = b = 1/4.
+, p=2 :
\(\Rightarrow p^2+44=4+44=48\) (hợp số loại)
+, p=3 :
\(\Rightarrow p^2+44=9+44=53\)(số nguyên tố thỏa mãn)
+, \(p>3\):
\(\Rightarrow\)p có dạng 3k+1;3k+2: \(\left(k\inℕ^∗\right)\)
+,p=3k+1:
\(\Rightarrow\left(3k+1\right)^2+44=3n+1+44=3n+45⋮3\)(hợp số loại)
+, p=3k+2:
\(\Rightarrow\left(3k+2\right)^2+44=3m+1+44=3m+45⋮3\)(hợp số loại) \(\left(m;n\inℕ^∗\right)\)
Vậy p=3
Ta có:
Nếu p=2 thì p+2=4 ko phải số nguyên tố nên loại
Nếu p=3 thì p+2=5;p+10=13 đều là số nguyên tố nên chọn
Nếu p>3 thì P=3k+1 hoặc P=3k+2
+P=3k+1=>P+2=3k+3 chia hết cho 3 loại
+P=3k+2 thì P+1=3k+12 chia hết cho 3 loại
Vậy P=3
Bài 1: ba số tự nhiên lẻ liên tiếp đều là số nguyên tố là 3;5;7
Bài 1 :
Gọi 3 số đó là p ; p + 2 ; p + 4
+ Nếu p = 2 thì p + 2 = 2 + 2 = 4 là hợp số
+ Nếu p = 3 thì p + 2 = 3 + 2 = 5 ; p + 4 = 3 + 4 = 7 đều là số ng tố
Với p là số nguyên tố lớn hơn 3 thì p chỉ có dạng 3k + 1 hoặc 3k + 2
+ Nếu p = 3k + 2 thì p + 4 là hợp số ( loại )
+ Nếu p = 3k + 1 thì p + 2 là hợp số ( loại )
Vậy ba số ng tố đó là : 3 ; 5 ; 7
P là số nguyên tố và p>3 => p+5, p+7 là sô chẵn đặt p+5=2k=> p+7=2k+2=>(p+5)(p+7)= 2k(2k+2)= 2k2(k+1)= 4k(k+1) chia hết cho 8
( vì k(k+1) chia hết cho 2 với mọi k thuộc n)
P là số nguyên tố lớn hơn 3 nên p có dạng 3n+1 hoặc 3n+2
. Xét P= 3n+1=> (p+5)(p+7)= (3n+6)(3n+8) chia hết cho 3 với mọi n thuộc N
. xét p=3n+2=> (p+5)(p+7)= (3n+7)(3n+9) chia hét cho 3 với mọi n thuộc N
(p+5)(p+7) chia hết cho 8 và 3=> (p+5)(p+7) chia hết cho 24
cho p là số nguyên tố lớn hơn 3.chứng minh (p+5)(p+7) chia hết cho 24
các bạn giải hộ mình vs
Đáp số: p=3