K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2018

Câu hỏi của An Thi Yen Nhi - Toán lớp 7 - Học toán với OnlineMath

4 tháng 7 2023

(x;y;z)={(6;9;12);(8;12;16)}(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

2z4x3=3x2y4=4y3z23(2z4x)9=4(3x2y)16=2(4y3z)4=6z12x+12x8y+8y6z9+16+4=02z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0

2z4x=03x2y=04y3z=0y=34z⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450200<y2+z2<450

200<(34z)2+z2<450200<2516z2<450128<z2<288⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương 128<z<288⇒128<z<288

z{12;13;14;15;16}⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34zy=34z

z{12;16}⇒z∈{12;16}

Thế vào y=34zy=34z và 2z4x=02z-4x=0

+) Với z=12y=34.12=6z=12⇒y=34.12=6

                    2.124x=0x=62.12-4x=0⇒x=6

Với z=16y=34.16=12z=16⇒y=34.16=12

    2.164x=0x=82.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là: (x;y;z)={(6;9;12);(8;12;16)}

4 tháng 7 2023

(x;y;z)={(6;9;12);(8;12;16)}(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

2z4x3=3x2y4=4y3z23(2z4x)9=4(3x2y)16=2(4y3z)4=6z12x+12x8y+8y6z9+16+4=02z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0

2z4x=03x2y=04y3z=0y=34z⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450200<y2+z2<450

200<(34z)2+z2<450200<2516z2<450128<z2<288⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương 128<z<288⇒128<z<288

z{12;13;14;15;16}⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34zy=34z

z{12;16}⇒z∈{12;16}

Thế vào y=34zy=34z và 2z4x=02z-4x=0

+) Với z=12y=34.12=6z=12⇒y=34.12=6

                    2.124x=0x=62.12-4x=0⇒x=6

Với z=16y=34.16=12z=16⇒y=34.16=12

    2.164x=0x=82.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là: (x;y;z)={(6;9;12);(8;12;16)}