Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3/x + 1/3 = y/3
3/x = y/3 - 1/3
3/x = y-1/3
=> 3 . 3 = x (y - 1)
=> 9 = x (y - 1)
=> x, y - 1 thuộc Ư(9) = {-9 ; -3 ; -1 ; 1 ; 3 ; 9}
Ta có bảng sau:
x | -9 | -3 | -1 | 1 | 3 | 9 |
y-1 | -1 | -3 | -9 | 9 | 2 | 1 |
y | 0 | -2 | -8 | 10 | 3 | 2 |
Vậy (x ; y) thuộc {(-9 ; 0) ; (-3 ; -2) ; (-1 ; -8) ; (1 ; 10) ; (3 ; 3) ; (9 ; 1)}.
b) x/6 - 1/y = 1/2
1/y = x/6 - 1/2
1/y = x/6 - 3/6
1/y = x-3/6
=> 6 = y (x - 3)
=> y, x - 3 thuộc Ư(6) = {-6 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 6}
...
Chỗ này bạn tự lập bảng nhé, tương tự như phần trước thôi ạ.
Ta có : \(\frac{3}{x}+\frac{1}{3}=\frac{y}{3}\)
=> \(\frac{3}{x}=\frac{y-1}{3}\)
=> x(y - 1) = 9
Lại có 9 = 3.3 = (-3).(-3) = 1.9 = (-1).(-9)
Lập bảng xét các trường hợp ta có
x | 1 | 9 | -1 | -9 | 3 | -3 |
y - 1 | 9 | 1 | -9 | -1 | 3 | -3 |
y | 10 | 2 | -8 | 0 | 4 | -2 |
Vậy các cặp (x;y) ta có : (1 ; 10) ; (9 ; 2) ; (-1 ; -8) ; (-9 ; 0) ; (3 ; 4) ; (-3 ; -2)
b) \(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
=> \(\frac{xy-6}{6y}=\frac{1}{2}\)
=> 2(xy - 6) = 6y
=> xy - 6 = 3y
=> xy - 3y = 6
=> y(x - 3) = 6
Ta có 6 = 1.6 = (-1).(-6) = 2.3 = (-2).(-3)
Lập bảng xét các trường hợp
y | 1 | 6 | -1 | -6 | 2 | 3 | -2 | -3 |
x - 3 | 6 | 1 | -6 | -1 | 3 | 2 | -3 | -2 |
x | 9 | 4 | -3 | -2 | 6 | 5 | 0 | 1 |
Vậy các cặp (x;y) ta có : (1;9) ; (6 ; 4) ; (-1 ; -3) ; (-6 ; -2) ; (2 ; 6) ; (3 ; 5) ; (-2 ; 0) ; (-3 ; 1)
Bài 1:
a)\(\left(2x+5\right)\left(6y-7\right)=13\)
=>2x+5 và 6y-7 thuộc Ư(13)={13;1;-1;-13}
- Với 2x+5=13 =>x=4 =>6y-7=1 =>y=4/3 (loại)
- Với 2x+5=-13 =>x=-9 =>6y-7=-1 =>y=1 (tm)
- Với 2x+5=-1 =>x=-3 =>6y-7=-13 =>y=-1 (tm)
- Với 2x+5=1 =>x=-2 =>6y-7=13=13 =>y=10/3 (loại)
Vậy các cặp số nguyên (x;y) thỏa mãn là (-9,1);(-3;-1)
2)xy+x+y=0
=>xy+x+y+1=1
=>(xy+x)+(y+1)=1
=>x(y+1)+(y+1)=1
=>(x+1)(y+1)=1
Sau đó bn =>x+1 và y+1 thuộc Ư(1) rồi tính như trên nhé
c)xy-x-y+1=0
=>(x-1)y-x+1=0
=>(x-1)y-x-0+1=0
=>(x-1)(y-1)=0
- Với x-1=0 =>x=1 thì mọi y thuộc Z đều thỏa mãn (vì đề chỉ cho thuộc Z)
- Với y-1=0 =>y=1 thì mọi x thuộc Z đều thỏa mãn
d và e bn phân tích ra tính tương tự
Bài 2:
a)\(A=\frac{x+5}{x+1}=\frac{x+1+4}{x+1}=\frac{x+1}{x+1}+\frac{4}{x+1}=1+\frac{4}{x+1}\in Z\)
=>4 chia hết x+1
=>x+1 thuộc Ư(4)={1;-1;2;-2;4;-4}
Bạn thay x+1={1;-1;2;-2;4;-4} vào rồi tính tiếp
b)\(=\frac{2x+4}{x+3}=\frac{2\left(x+3\right)-2}{x+3}=\frac{2\left(x+3\right)}{x+3}-\frac{1}{x+3}=2-\frac{1}{x+3}\in Z\)
=>2 chia hết x+3
=>x+3 thuộc Ư(2)={1;-1;2-2} tự làm nhé
c)\(C=\frac{4x+4}{2x+4}=\frac{2\left(2x+4\right)-4}{2x+4}=\frac{2\left(2x+4\right)}{2x+4}-\frac{4}{2x+4}=2-\frac{4}{2x+4}\in Z\)
=>4 chia hết 2x+4
=>2x+4 thuộc Ư(4)={1;-1;2;-2;4;-4} tự tính tiếp nhé
\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)
\(\frac{x}{4}-\frac{1}{2}=\frac{1}{y}\)
\(\frac{x}{4}-\frac{2}{4}=\frac{1}{y}\)
\(\frac{x-2}{4}=\frac{1}{y}\)
\(y\left(x-2\right)=4\)
Ta có:4=2.2=(-2).(-2)=4.1=1.4=(-1).(-4)=(-4).(-1)
Do đó ta có bảng sau:
y | 4 | 1 | 2 | -2 | -4 | -1 |
x-2 | 1 | 4 | 2 | -2 | -1 | -4 |
x | 3 | 6 | 4 | 0 | 1 | -2 |
Vậy cặp (x;y) TM là:(3;4)(6;1)(4;2)(0;-2)(1;-4)(-2;-1)
\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\\ \Rightarrow\frac{xy}{4y}-\frac{4}{4y}=\frac{1}{2}\\ \Rightarrow\frac{xy-4}{4y}=\frac{1}{2}\\ \Rightarrow2\left(xy-4\right)=4y\\ \Rightarrow2xy-8=4y\\ \Rightarrow2xy-4y-8=0\\ \Rightarrow y\left(2x-4\right)=8\)
2x-4 | 1 | 8 | 2 | 4 | -1 | -8 | -2 | -4 |
y | 8 | 1 | 4 | 2 | -8 | -1 | -4 | -2 |
x | 6 | 3 | 4 | -2 | 1 | 0 |
Vậy (x;y)=(6;1);(3;4);(4;2);(-2;-1);(1;-4);(0;-2)
\(\frac{x}{4}\)- \(\frac{1}{y}\)=\(\frac{1}{2}\)
\(\frac{x}{4}\)-\(\frac{1}{2}\)= \(\frac{1}{y}\)
\(\frac{x}{4}\)-\(\frac{2}{4}\)=\(\frac{1}{y}\)
\(\frac{x-2}{4}\)=\(\frac{1}{y}\)
\(\Rightarrow\)\(y\cdot\left(x-2\right)\)= 4
Vì \(y\in Z,x-2\in Z\)nên ta có bảng:
-1