K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

a)Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-1\right|+\left|3+x\right|=\left|1-x\right|+\left|3+x\right|\ge\left|1-x+3+x\right|=4\)

\(\Rightarrow VT\ge VP."="\Leftrightarrow-3\le x\le1\)

b) \(\hept{\begin{cases}\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge4\\\frac{8}{2\left(y-5\right)^2+2}\le4\end{cases}}\Leftrightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}\le x\le\frac{1}{2}\\y=5\end{cases}}\)

c Tương tự b

2) \(\frac{1}{x}+\frac{1}{y}=5\Leftrightarrow x+y-5xy=0\Leftrightarrow5x+5y-25xy=0\Leftrightarrow5x\left(1-5y\right)-\left(1-5y\right)=-1\)

\(\Leftrightarrow\left(5x-1\right)\left(1-5y\right)=-1\)

Xét ước

17 tháng 5 2019

c) Tìm các số nguyên x,y thỏa mãn

*\(2xy+6x-y=10\)

\(\Leftrightarrow\left(2xy+6x\right)-y-3=10-3=7\)

\(\Leftrightarrow2x\left(y+3\right)-\left(y+3\right)=7\)

\(\Leftrightarrow\left(y+3\right)\left(2x-1\right)=7\)

Lập bảng xét ước nữa là xong.

\(xy+4x-3y=1\Leftrightarrow\left(xy+4x\right)-3y-12=1-12=-11\)

\(\Leftrightarrow x\left(y+4\right)-\left(3y+12\right)=-11\)

\(\Leftrightarrow x\left(y+4\right)-3\left(y+4\right)=-11\)

\(\Leftrightarrow\left(x-3\right)\left(y+4\right)=-11\)

Lập bảng xét ước nữa là xong.

17 tháng 5 2019

Mới nhìn vào thấy bài toán hay hay lạ kì.

Thêm một vào bớt một ra

Tức thì bài toán trở nên dễ dàng:

 \(\frac{x}{50}-\frac{x-1}{51}=\frac{x+2}{48}-\frac{x-3}{53}\) 

\(\Leftrightarrow\frac{x}{50}+1-\frac{x-1}{51}-1=\frac{x+2}{48}+1-\frac{x-3}{53}-1\)

\(\Leftrightarrow\left(\frac{x}{50}+1\right)-\left(\frac{x-1}{51}+1\right)=\left(\frac{x+2}{48}+1\right)-\left(\frac{x-3}{53}+1\right)\)

\(\Leftrightarrow\frac{x+50}{50}-\frac{x+50}{51}=\frac{x+50}{48}-\frac{x+50}{53}\)

\(\Leftrightarrow\frac{x+50}{50}-\frac{x+50}{51}-\frac{x+50}{48}+\frac{x+50}{53}=0\)

\(\Leftrightarrow\left(x+50\right)\left(\frac{1}{50}-\frac{1}{51}-\frac{1}{48}+\frac{1}{53}\right)=0\)

Dễ thấy \(\left(\frac{1}{50}-\frac{1}{51}-\frac{1}{48}+\frac{1}{53}\right)\ne0\)

Do đó x + 50 = 0 hay x = -50

21 tháng 6 2019

a) Ta có: \(\left(x-1\right)^2\ge\)\(\forall\)x

            \(\left|y+2\right|\ge0\)\(\forall\) y

=> \(\left(x-1\right)^2+\left|y+2\right|\ge0\)\(\forall\)x,y

=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\y+2=0\end{cases}}\)

=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy ...

b) Ta có: \(\frac{1}{2}-\frac{y}{3}=\frac{2}{x}\)

=> \(\frac{3-2y}{6}=\frac{2}{x}\)

=> \(x\left(3-2y\right)=12\)

=> x; 3 - 2y \(\in\)Ư(12) = {1; -1; 2; -2; 3; -3; 4; -4; 6; -6; 12; -12}

Do 3 - 2y là số lẽ , mà x,y \(\in\)Z

=> 3 - 2y \(\in\) {1; -1; 3; -3} 

Lập bảng :

3 - 2y1 -1 3 -3
   x 12 -12 4 -4
   y 1  2  0 3

Vậy ...

23 tháng 12 2016

a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)

\(\Rightarrow3⋮a+1\)

\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)

b) Phần 1

\(x-2xy+y=0\)

\(\Rightarrow2x-4xy+2y=0\)

\(\Rightarrow2x-4xy+2y-1=-1\)

\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Lập bảng xét Ư(-1)={1;-1}

Phần 2:

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)

+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy P có giá trị nguyên 

30 tháng 1 2020

b) \(\left|5x-3\right|-x=7\)

\(\Rightarrow\left|5x-3\right|=7+x\)

\(\Rightarrow\orbr{\begin{cases}5x-3=7+x\\5x-3=-\left(7+x\right)\end{cases}\Rightarrow\orbr{\begin{cases}5x-3=7+x\\5x-3=-7-x\end{cases}\Rightarrow}\orbr{\begin{cases}5x-x=7+3\\5x+x=-7+3\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}4x=10\\6x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{2}{3}\end{cases}}}\)

Vậy .................... 

30 tháng 1 2020

Bạn ơi !!! ý A tham khảo tại link này nè :

https://h.vn/hoi-dap/question/394208.html

~ Học tốt ~

13 tháng 9 2019

1) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

\(\Leftrightarrow\frac{x+y+z}{xyz}=1\)

\(\Leftrightarrow x+y+z=xyz\)

Không mất tính tổng quát, giả sử: \(x\le y\le z\)

Lúc đó: \(x+y+z\le3z\)

\(\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)

\(\Rightarrow xy\in\left\{1;2;3\right\}\)

* Nếu xy = 1 thì x = y = 1\(\left(x,y\inℤ\right)\)\(\Rightarrow2+z=z\)(vô lí)

* Nếu xy = 2 thì x = 1, y = 2 (Do \(x\le y\),\(x,y\inℤ\))\(\Rightarrow3+z=2z\Leftrightarrow z=3\)

* Nếu xy = 3 thì x = 1, y = 3(Do \(x\le y\),\(x,y\inℤ\)\(\Rightarrow4+z=3z\Leftrightarrow z=2\)

Vậy x,y,z là các hoán vị của (1,2,3)

13 tháng 9 2019

\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

\(\Leftrightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)

\(\Leftrightarrow\frac{5}{x}=\frac{1-2y}{8}\)

\(\Leftrightarrow40=x\left(1-2y\right)\)

Đến đây bạn lập bảng ha !

7 tháng 7 2016

Bài 1:

a)\(\left(2x+5\right)\left(6y-7\right)=13\)

=>2x+5 và 6y-7 thuộc Ư(13)={13;1;-1;-13}

  • Với 2x+5=13 =>x=4      =>6y-7=1 =>y=4/3 (loại)
  • Với 2x+5=-13 =>x=-9    =>6y-7=-1 =>y=1 (tm)
  • Với 2x+5=-1 =>x=-3      =>6y-7=-13 =>y=-1 (tm)
  • Với 2x+5=1  =>x=-2      =>6y-7=13=13 =>y=10/3 (loại)

Vậy các cặp số nguyên (x;y) thỏa mãn là (-9,1);(-3;-1)

2)xy+x+y=0

=>xy+x+y+1=1

=>(xy+x)+(y+1)=1

=>x(y+1)+(y+1)=1

=>(x+1)(y+1)=1

Sau đó bn =>x+1 và y+1 thuộc Ư(1) rồi tính như trên nhé

c)xy-x-y+1=0

=>(x-1)y-x+1=0

=>(x-1)y-x-0+1=0

=>(x-1)(y-1)=0

  • Với x-1=0 =>x=1 thì mọi y thuộc Z đều thỏa mãn (vì đề chỉ cho thuộc Z) 
  • Với y-1=0 =>y=1 thì mọi x thuộc Z đều thỏa mãn

d và e bn phân tích ra tính tương tự

Bài 2:

a)\(A=\frac{x+5}{x+1}=\frac{x+1+4}{x+1}=\frac{x+1}{x+1}+\frac{4}{x+1}=1+\frac{4}{x+1}\in Z\)

=>4 chia hết x+1

=>x+1 thuộc Ư(4)={1;-1;2;-2;4;-4}

Bạn thay x+1={1;-1;2;-2;4;-4} vào rồi tính tiếp

b)\(=\frac{2x+4}{x+3}=\frac{2\left(x+3\right)-2}{x+3}=\frac{2\left(x+3\right)}{x+3}-\frac{1}{x+3}=2-\frac{1}{x+3}\in Z\)

=>2 chia hết x+3 

=>x+3 thuộc Ư(2)={1;-1;2-2} tự làm nhé

c)\(C=\frac{4x+4}{2x+4}=\frac{2\left(2x+4\right)-4}{2x+4}=\frac{2\left(2x+4\right)}{2x+4}-\frac{4}{2x+4}=2-\frac{4}{2x+4}\in Z\)

=>4 chia hết 2x+4

=>2x+4 thuộc Ư(4)={1;-1;2;-2;4;-4} tự tính tiếp nhé