K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2019

đề bài là gì vậy bạn???

2 tháng 1 2018

Ta có \(2x^2-2xy=5x-y-19\Leftrightarrow2x^2-5x+19=2xy-y\)

<=>\(\frac{2x^2-5x+19}{2x-1}=y\)

Mà y là số nguyên =>\(\frac{2x^2-5x+19}{2x-1}\in Z\Leftrightarrow\frac{2x^2-x-4x+2+17}{2x-1}\in Z\)

\(\Leftrightarrow2x-2+\frac{17}{2x-1}\in Z\Leftrightarrow\frac{17}{2x-1}\in Z\Rightarrow17⋮2x-1\)

đến đây lấp bảng nhé !

^_^

2 tháng 1 2018

Thanks ban nha

8 tháng 7 2019

a) 2xy - 3x + 5y = 4

=> 2(2xy - 3x + 5y) = 8

=> 4xy + 6x + 10y = 8

=> 2x(2y + 3) + 5(2y + 3) = 23

=> (2x + 5)(2y + 3) = 23

=> 2x + 5; 2y + 3 \(\in\)Ư(23) = {1; -1; 23; -23}

Lập bảng:

2x + 5 1 -1 23 -23
2y + 3 23 -23 1  -1
   x -2 -3 9 -14
   y 10 -13 -1 -2

Vậy ...

8 tháng 3 2023

a)ta có :2xy-6=4x-y => 2xy-6-4x+y=0 => 2*(2xy-6-4x+y)=2*0               =>4xy-12-8x+2y=0 => 2x2y-4-8-8x+2y=0 => 2x2y-4-8x+2y=8                 =>(2x2y+2y)-(8x+4)=8 =>2y(2x+1)-4(2x+1)=8 => (2y-4)(2x+1)=8           Ta có bảng sau :

2y-4 1 8 2 4 -1 -8 -2 -4
2x+1 8 1 4 2 -8 -1 -4 -2
y(yϵ\(ℤ\)) 5/2(loại ) 6(thỏa mãn) 3(loại) 4(loại) 3/2( loại) -2(thỏa mãn) 1( loại) 0(loại )
x(xϵ\(ℤ\)) 7/2(loại) 0(thỏa mãn) 3/2( loại) 1/2( loại) -9/2( loại) -1(thỏa mãn) -5/2( loại) -3/2( loại)

Vậy các cặp nghiệm x,y thỏa mãn là (0;6) và (-1;-2)

4 tháng 3 2018

                       XONG RỒI ĐẤY BẠN

a) \(x^2-2x+2xy=3+4y\)

\(x^2-2x+2xy-4y=3\)

\(x\left(x-2\right)+2y\left(x-2\right)=3\)

\(\left(x-2\right)\left(x+2y\right)=3\)

\(\Rightarrow x-2;x+2y\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\)Ta có bảng giá trị:

\(x-2\)\(1\)\(-1\)\(3\)\(-3\)
\(x+2y\)\(3\)\(-3\)\(1\)\(-1\)
\(x\)\(3\)\(1\)\(5\)\(-1\)
\(y\)\(0\)\(-2\)\(-2\)\(0\)

               Vậy, \(\left(x;y\right)\in\left\{\left(3;0\right);\left(1;-2\right);\left(5;-2\right)\left(-1;0\right)\right\}\)

b) \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)

             Ta có: \(\left|2x-3y\right|\ge0\)

                        \(\left|5y-7z\right|\ge0\)

                        \(\left|x^2-y^2-2z^2-45\right|\ge0\)

                  \(\Rightarrow\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|\ge0\)

            Mà đề cho \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)

               \(\Rightarrow\hept{\begin{cases}\left|2x-3y\right|=0\\\left|5y-7z\right|=0\\\left|x^2-y^2-2z^2-45\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2x-3y=0\\5y-7z=0\\x^2-y^2-2z^2-45=0\end{cases}}}\)

               \(\Rightarrow\hept{\begin{cases}2x=3y\\5y=7z\\x^2-y^2-2z^2=45\end{cases}\Rightarrow\hept{\begin{cases}10x=15y\\15y=21z\\x^2-y^2-2z^2=45\end{cases}}}\)

               \(\Rightarrow10x=15y=21z\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}\)và \(x^2-y^2-2z^2=45\)

                             Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

                           \(\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}=\frac{2z^2}{2\cdot10^2}=\frac{x^2-y^2-2z^2}{21^2-14^2-2\cdot10^2}\)

                                                                                        \(=\frac{45}{441-196-200}=1\)(vì \(x^2-y^2-2z^2=45\))

                 \(\Rightarrow\hept{\begin{cases}x^2=21^2\\y^2=14^2\\z^2=10^2\end{cases}}\Rightarrow\hept{\begin{cases}x=21\\y=14\\z=10\end{cases}}\)

                           Vậy, \(\left(x;y;z\right)=\left(21;14;10\right)\)

                                   

4 tháng 3 2018

cảm ơn bạn nha Huỳnh Phước Mạnh