Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5.2^{x+1}.2^{-2}-2^x=384\Leftrightarrow2^x\left(5.2^{-2}.2-1\right)=384\)\(\Leftrightarrow2^x.1,5=384\Leftrightarrow2^x=384:1,5=256=2^8\)
\(\Rightarrow x=8\)
b) \(3^{x+2}.5^y=45^x\Leftrightarrow3^{x+2}.5^y=3^{2x}.5^x\Leftrightarrow\frac{3^{2x}}{3^{x+2}}=\frac{5^y}{5^x}\)\(\Leftrightarrow3^{2x-x+2}=5^{y-x}\Leftrightarrow3^{x+2}=5^{y-x}\)
\(\Rightarrow x+2=y-x=0\Rightarrow x=y=-2\)
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)
a) \(5.2^{x+1}.2^{-2}-2^x=384\)
\(\Leftrightarrow2^x.2.\frac{5}{4}-2^x=384\)
\(\Leftrightarrow2^x.\left(\frac{5}{2}-1\right)=384\)
\(\Leftrightarrow2^x.\frac{3}{2}=384\)
\(\Leftrightarrow2^x=256\)
\(\Leftrightarrow2^x=2^8\)
\(\Leftrightarrow x=8\)
c) \(\left(x+1\right)^{x+1}=\left(x+1\right)^{x+3}\)
\(\Leftrightarrow\left(x+1\right)^{x+3}-\left(x+1\right)^{x+1}=0\)
\(\Leftrightarrow\left(x+1\right)^{x+1}\left[\left(x+1\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)^{x+1}=0\\\left(x+1\right)^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x\in\left\{0;-2\right\}\end{cases}}}\)
Vậy \(x\in\left\{0;-1;-2\right\}\)
Bài 1:
Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
\(\Leftrightarrow2x=\frac{1440}{144}=10\)
\(\Rightarrow x=5\)
Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)
=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
a)Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-1\right|+\left|3+x\right|=\left|1-x\right|+\left|3+x\right|\ge\left|1-x+3+x\right|=4\)
\(\Rightarrow VT\ge VP."="\Leftrightarrow-3\le x\le1\)
b) \(\hept{\begin{cases}\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge4\\\frac{8}{2\left(y-5\right)^2+2}\le4\end{cases}}\Leftrightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}\le x\le\frac{1}{2}\\y=5\end{cases}}\)
c Tương tự b
2) \(\frac{1}{x}+\frac{1}{y}=5\Leftrightarrow x+y-5xy=0\Leftrightarrow5x+5y-25xy=0\Leftrightarrow5x\left(1-5y\right)-\left(1-5y\right)=-1\)
\(\Leftrightarrow\left(5x-1\right)\left(1-5y\right)=-1\)
Xét ước
a nhân loạn lên, c 813=(34)3=312:3x....
d)NHớm x-7x+1 vào
d.
33 < 3x < 35
--> 3 < x < 5
suy ra x=4