K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

A = (x^5 + 1)/(x³ + 1) = x² + (1 - x²)/(x³ + 1)

= x² + (1 - x)/(x² - x + 1)

Để A nguyên thì B = (1 - x)/(x² - x + 1) nguyên 

=> Bx² + (1 - B)x + (B - 1) = 0

Để có nghiệm thì 

∆ = (1 - B)² - 4.B.(B - 1) ≥ 0

<=> 0 ≤ B ≤ 1

Thế vô làm tiếp

3 tháng 2 2019

dễ hiểu hơn nè

Ta có : để A là số nguyên thì x5 + 1 \(⋮\)x3 + 1

\(\Rightarrow\)x2 ( x3 + 1 ) - ( x2 - 1 )  \(⋮\)x3 + 1

\(\Rightarrow\)( x - 1 ) ( x + 1 ) \(⋮\)( x + 1 ) ( x2 - x + 1 )

\(\Rightarrow\)x - 1 \(⋮\)x2 - x + 1   ( vì x + 1 khác 0 )

\(\Rightarrow\)x ( x - 1 ) \(⋮\)x2 - x + 1 

\(\Rightarrow\)x2 - x  \(⋮\)x2 - x + 1 

\(\Rightarrow\)( x2 - x + 1 ) - 1 \(⋮\)x2 - x + 1 

\(\Rightarrow\)\(⋮\)x2 - x +  1

xét 2 trường hợp : 

n2 - n + 1 = 1 \(\Rightarrow\)n ( n - 1 ) = 0 \(\Rightarrow\)n = 0 ; n = 1

n2 - n + 1 = -1 \(\Rightarrow\)n2 - n + 2 = 0 ( vô nghiêm )

vậy x = 0 ; x = 1 thì A có giá trị là số nguyên

25 tháng 2 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)

\(\Leftrightarrow A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2\left(x+2\right)}{x-3}\)

\(\Leftrightarrow A=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{\left(x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{x+4}{x-3}\)

b) Để \(A\inℤ\)

\(\Leftrightarrow\frac{x+4}{x-3}\inℤ\)

\(\Leftrightarrow1+\frac{7}{x-3}\inℤ\)

\(\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)

c) Để \(A=\frac{3}{5}\)

\(\Leftrightarrow\frac{x+4}{x-3}=\frac{3}{5}\)

\(\Leftrightarrow5x+20=3x-9\)

\(\Leftrightarrow2x+29=0\)

\(\Leftrightarrow x=-\frac{29}{2}\)

d) Để \(A< 0\)

\(\Leftrightarrow\frac{x+4}{x-3}< 0\)

\(\Leftrightarrow1+\frac{7}{x-3}< 0\)

\(\Leftrightarrow\frac{-7}{x-3}< 1\)

\(\Leftrightarrow-7< x-3\)

\(\Leftrightarrow x>-4\)

e) Để \(A>0\)

\(\Leftrightarrow\frac{x+4}{x-3}>0\)

\(\Leftrightarrow1+\frac{7}{x-3}>0\)

\(\Leftrightarrow\frac{-7}{x-3}>1\)

\(\Leftrightarrow-7>x-3\)

\(\Leftrightarrow x< -4\)

13 tháng 12 2020

a, \(M=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)

\(=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{x^2-12-x}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)

c, Đặt \(\frac{x-4}{x-2}=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)( thỏa mãn )

Thử : \(\frac{x-4}{x-2}=\frac{4-4}{4-2}=0\)

Câu 1:Cho hv MNPQ có S =225 cm2. Độ dài cạnh hv là 4x-1.Hỏi giá trị của x là bao nhiêu?Câu 2:ABCD là hv có cạnh 18 cm. Điểm E thuộc cạnh AD sao cho AE =x. Để SABCD =SABE thì gt của x là....Câu 3:GT của BT  P=\(\frac{4x^2-3x+17}{x^2-1}+\frac{2x-1}{x^2+x+1}+\frac{6}{1-x}\)khi x=\(\frac{-1}{2}\)Câu 4:Nếu x-y=1 thì giá trị biểu thức E =X\(^{x^3-3xy-y^2}\)là.........Câu 5:Giá trị của tổng...
Đọc tiếp

Câu 1:Cho hv MNPQ có S =225 cm2. Độ dài cạnh hv là 4x-1.Hỏi giá trị của x là bao nhiêu?

Câu 2:ABCD là hv có cạnh 18 cm. Điểm E thuộc cạnh AD sao cho AE =x. Để SABCD =SABE thì gt của x là....

Câu 3:GT của BT  P=\(\frac{4x^2-3x+17}{x^2-1}+\frac{2x-1}{x^2+x+1}+\frac{6}{1-x}\)khi x=\(\frac{-1}{2}\)

Câu 4:Nếu x-y=1 thì giá trị biểu thức E =X\(^{x^3-3xy-y^2}\)là.........

Câu 5:Giá trị của tổng :A=\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+\frac{9}{\left(4.5\right)^2}+....+\frac{89}{\left(44.45\right)^2}\)

Câu 6: Cho x;y;z  khác -1. Gt của bt 

A=\(\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+y+z+1}+\frac{zx+2z+1}{zx+z+x+1}\)

Câu 7:Tổng các số nguyên dương x sao cho x+56 và x+113 đều là số chính phương

Câu 8 :Khi phân tích số 2016 ra thừa số nguyên tố thì tổng các thừa số nguyên tố đó là

Câu 9 Diện tích tam giác ABC vuông tại A;Biết BC=17 cm và AB+AC 23am là..........

Câu 10:Biết tỉ số giữa 2 cạnh kề 1 hình chữ nhật là   \(\frac{4}{7}\)và diện tích bằng 700 cm2;Chiều dài HCN là

Câu 11: Cho hcn MNPQ có MN =5cm;MN>NP =2cm

Diện tích hình chữ nhật MNPQ là ....... cm2

 

 

2
8 tháng 2 2017

\(C7=736\)

8 tháng 2 2017

\(C1:\)\(S\)\(=225\)\(cm^2\)\(\Leftrightarrow\)\(S=\left(4x-1\right)^2\)

\(\Rightarrow\left(4x-1\right)^2=225\)

\(\Rightarrow\left(4x-1\right)^2=15^2\Rightarrow4x-1=15\)

\(\Rightarrow4x=16\)

\(\Rightarrow x=4\)

24 tháng 4 2017

10x^2 - 7x - 5 2x - 3 5x + 4 10x^2 - 15x - 8x - 5 8x - 12 7 -

Ta có \(M=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)

Để \(M=5x+4+\frac{7}{2x-3}\) là số nguyên <=> \(\frac{7}{2x-3}\)là số nguyên

\(\Rightarrow7⋮2x-3\) hay \(2x-3\inƯ\left(7\right)\)

\(\RightarrowƯ\left(7\right)=\) { - 7; - 1; 1; 7 }

Ta có : 2x - 3 = 7 <=> 2x = 10 => x = 5 (t/m)

           2x - 3 = 1 <=> 2x = 4 => x = 2 (t/m)

           2x - 3 = - 1 <=> 2x = 2 => x = 1 (t/m)

           2x - 3 = - 7 <=> 2x = - 4 => x = - 2 (t/m)

Vậy với x \(\in\) { - 2; 1; 2; 5 } thì M là số nguyên 

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
16 tháng 12 2018

ĐKXĐ: \(x\ne1\)

\(A=\frac{5x+1}{x^3-1}-\frac{1-2x}{x^2+x+1}-\frac{2}{1-x}\)

\(A=\frac{5x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(1-2x\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{5x+1-x+1+2x^2-2x+2x^2+2x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{4x^2+4x+4}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{4\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{4}{x-1}\left(x^2+x+1\ne0\right)\)

16 tháng 12 2018

b, ĐỂ x nhân giá trị nguyên 

\(\Rightarrow4⋮x-1\)

\(\Rightarrow x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Nếu : x - 1 = 1 => x = 2 

  x - 1 = -1 => x = 0 

x - 1 = 2 => x = 3 

.....