Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ biết là theo định lí Fermat lớn thì pt \(x^n+y^n=z^n\) ko có nghiệm nguyên khác 0 khi \(n\ge3\) chứng đừng nói tới số nguyên tố.
Do \(p^4+q^4=r^4\)mà p, q, r là số nguyên tố nên r > q, r > p
\(\Rightarrow\)Chắc chắn r là số lẻ.
\(\Rightarrow\)p hoặc q là số chẵn.
Giả sử p chẵn \(\Rightarrow\)p = 2.
Ta có:\(16+q^4=r^4\)
\(\Leftrightarrow r^4-q^4=16\)
\(\Leftrightarrow\left(r^2-q^2\right)\left(r^2+q^2\right)=16\)
\(\Rightarrow r^2-q^2,r^2+q^2\inƯ\left(16\right)\)
Ta lại có: \(r^2-q^2< r^2+q^2\)
\(\Rightarrow\hept{\begin{cases}r^2-q^2=1\\r^2+q^2=16\end{cases}\Leftrightarrow\hept{\begin{cases}r=\frac{\sqrt{34}}{2}\\q=\frac{\sqrt{30}}{2}\end{cases}}}\)(Không thỏa mãn)
Vậy không có giá trị nào của p, q, r thỏa mãn yêu cầu đề bài.
Trước hết ta có thể giả sử q=2
* Nếu n là số nguyên dương lẻ thì ta có:
\(p^n+2^n=\left(p+2\right)\left(\frac{p^n+2^n}{p+2}\right)=r^2\) mà do r là số nguyên tố nên ta phải có:
\(p+2=\frac{p^n+2^n}{p+2}=r\)
Nếu n là số lẻ và \(n\ge3\) thì ta có: \(\frac{p^n+2^n}{p+2}>p+2\) từ đây ta dẫn đến một điều vô lý. Do đó, ta phải có: n=1.
* Nếu n là số chẵn, đặt n=2k , \(k\in Z^+\) thì từ đây ta có: \(\left(p^k\right)^2+\left(2^k\right)^2=r^2\) mà dễ thấy p , r phải phân biệt nên đây là bộ ba Phythagore nên tồn tại x,y:(x,y) = 1 và x,y khác tính chẵn lẻ thỏa mãn:
\(\hept{\begin{cases}p^k=2xy\\2^k=x^2-y^2\end{cases}}\) hoặc \(\hept{\begin{cases}2^k=2xy\\p^k=x^2-y^2\end{cases}}\)
Mà p là số nguyên tố nên trường hợp này không xảy ra.
Vậy ta phải có: n=1
Chúc bạn học tốt !!!
Ta có p^2-p=q^2-3q+2 <=> p(p-1)=(q-1)(q-2) (*)
Từ (*) suy ra p|(q-1)(q-2). Do p là snt nên p|(q-1) hoặc p|(q-2)
+) Xét p|(q-1). Đặt q=kp+1 (k E N*) thay vào (*):
kp(kp-1)=p(p-1) <=>k(kp-1)=p-1 <=> pk^2 -k-p+1=0.<=>(p-1)[p(k+1)-1]=0
=>k=1 (Do p(k+1)-1>0).
Lúc này q=p+1>=3. Do vậy p=2. q=3 (Do p;q nguyên tố) suy ra p^2+q^2=13 là snt
Xét p|(q-2) đặt q=tp+2 (t E N*) . Thay vào (*) biến đổi tương tự ta được . (t+1)[p(k-1)+1]=0 (vô lý nên loại)
Vậy đpcm
p2 - q2 = p - 3q + 2
4p2 - 4q2 = 4p - 12q + 8
4p2 - 4p + 1 = 4q2 - 12q + 9
(2p - 1)2 = (2q - 3)2
Mà 2p - 1 >0(p nguyên tố);2q - 3 >0(q nguyên tố)
Do đó 2p - 1 = 2q - 3 <=> p + 1 = q
Ta có q > 3 (vì p > 2) nên q lẻ, do đó p chẵn
=> p = 2. Nên q = p + 1 = 3
Vậy p2 + q2 = 22 + 32 = 4 + 9 = 13 là số nguyên tố