\(2^p+p^2=q\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2020

Ta có: \(p^2=8q+9\)

<=>\(p^2-9=8q\)

<=>\(\left(p-3\right)\left(p+3\right)=8q\)

Do q là số nguyên tố=> q chia hết cho 1 hoặc chính nó =>Một trong hai số \(p-3\)và \(p+3\)bằng 8

=>\(\orbr{\begin{cases}p-3=8\\p+3=8\end{cases}}\)<=>\(\orbr{\begin{cases}p=11\\p=5\end{cases}}\)<=>\(\orbr{\begin{cases}q=14\left(lọai\right)\\q=2\end{cases}}\)

Vậy \(p=5\)và \(q=2\)

26 tháng 7 2016

Ai đọc bài này thì tham khảo thôi, ko cần làm đâu, mk nghĩ ra rồi

26 tháng 7 2016

bài này tui nhớ ko lầm thì tách thành A=n4+4.n2.4k+4.42k-4.n2.4k

sau đó phân tích thành nhân tử

4 tháng 9 2021

giúp mình với ạ!!!

23 tháng 11 2018

\(p^2-p=q^2-3q+2\Leftrightarrow p\left(p-1\right)=\left(q-1\right)\left(q-2\right)⋮2\)=> q>p

TH1: p=2 => q=3 thỏa mãn

TH2: p>2

mà p nguyên tố  lẻ => p-1 chia hết cho 2

và p-1 chia hết cho (q-1)(q-2) => p-1> (q-1)(1-2) vô lí 

29 tháng 5 2018

Vì số nguyên tố nhỏ nhất là 2 nên \(q\ge2\Leftrightarrow5q^2\ge20\)

Lại có: \(p^2-5q^2=4\Leftrightarrow p^2=4+5q^2\ge4+20=24\)

\(\Rightarrow p\ge4,9\)

Mà p là số nguyên tố \(\Rightarrow p\ne3\Rightarrow p⋮̸3\)

Ta có tình chất sau: Một số không chia hết cho 3 khi bình phương lên luôn chia 3 dư 1

Nên \(p^2:3\)(dư 1)

Ta lại có 4 :3 dư 1

\(\Rightarrow5q^2⋮3\Rightarrow q⋮3\)

Mà q là số nguyên tố nên q = 3.

Thay q vào phương trình ban đầu ta được p = 7 (thỏa mãn p là số nguyên tố)

chịu,mới lớp 5 thôi

25 tháng 9 2017

ta có phương trình đó 

<=> \(x^2+4x+4-y^4=3\Leftrightarrow\left(x+2\right)^2-y^4=3\Leftrightarrow\left(x+2-y^2\right)\left(x+2+y^2\right)=3\)

đến đây đưa về ước của 3 thì tự lập bảng nhé

6 tháng 12 2020

a) \(p^2q+p⋮\left(p^2+q\right)\Rightarrow q\left(p^2+q\right)-\left(p^2q+q\right)=q^2-p\left(p^2+q\right)\)

\(pq^2+q⋮\left(q^2-p\right)\Rightarrow\left(pq^2+q\right)-p\left(q^2-p\right)=p^2+q⋮q^2-p\)

\(q^2-p=-\left(p^2+q\right)\Leftrightarrow q^2+q+p^2-p=0\left(VN\right)\)

\(q^2-p=p^2+q\Leftrightarrow\left(q+p\right)\left(q-p-1\right)=0\Leftrightarrow q-p-1=0\Leftrightarrow q=p+1\)

Mà p,q là 2 số nguyên tố nên p=2, q=3