K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

a) Ta có :

\(n+1=n-2+3\)chia hết cho \(n-2\)\(\Rightarrow\)\(3\)chia hết cho \(n-2\)\(\Rightarrow\)\(\left(n-2\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Do đó :

\(n-2=1\Rightarrow n=1+2=3\)

\(n-2=-1\Rightarrow n=-1+2=1\)

\(n-2=3\Rightarrow n=3+2=5\)

\(n-2=-3\Rightarrow n=-3+2=-1\)

Vậy \(n\in\left\{3;1;5;-1\right\}\)

7 tháng 2 2018

a, n + 1 chia hết cho n - 2

\(\Rightarrow n-2+3\) chia hết cho \(n-2\)

\(\Rightarrow\) 3 chia hết cho n - 2

\(\Rightarrow n-2\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n-2\in\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)

5 tháng 1 2016

a)n+2={1;2;4;8;16}

n={-1;0;2;6;14}

b)(n-4)chia hết cho(n-1)

(n-1-3) chia hết cho(n-1)

Vì (n-1)chia hết cho (n-1) suy ra -3 chia hết cho (n-1)

Vậy n-1 thuộc Ư(-3)={1;3;-1;-3}

suy ra n={1;4;0;-2}

c) 2n+8 thuộc B(n+1)

suy ra n+1 chia het cho 2n+8

suy ra 2n+2 chia het cho 2n+8

suy ra (2n+8)-6 chia het cho2n+8

Vi 2n+8 chia het cho 2n+8 nen -6 chia het cho 2n+8

suy ra 2n+8 thuộc {1;2;3;6;-1;-2;-3;-6}

mà 2n+8 là số nguyên chẵn( chẵn + chẵn = chẵn)

suy ra 2n+8 thuộc{2;6;-2;-6}

suy ra 2n thuộc{-6;-2;-10;-14}

suy ra n thuộc {-3;-1;-5;-7}

d) 3n-1 chia het cho n-2

suy ra [(3n-6)+5chia hết cho n-2

Vì 3n-6 chia hết cho n-2 suy ra 5 chia hết cho n-2

suy ra n-2 thuộc{1;5;-1;-5}

suy ra n thuộc{3;7;1;-3}

e)3n+2 chia hết cho 2n+1

suy ra [(6n+3)+1] chia hết cho 2n+1

Vì 6n+3 chia hết cho 2n+1 nên 1 chia hết cho 2n+1

suy ra 2n+1 thuộc{1;-1}

suy ra 2n thuộc {0;-2}

suy ra n thuộc {0;-1}

 

14 tháng 3 2020

a) ta có 2n+3=2(n+2)-1

=> 1 chia hết cho n+2

n nguyên => n+2 nguyên => n+1 thuộc Ư (1)={-1;1}
Nếu n+1=-1 => n=-2

Nếu n+1=1 => n=0

Vậy n={-2;0}

b) Ta có n2+2n+5=n(n+2)+5

=> 5 chia hết cho n+2

n nguyên => n+2 nguyên => n+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng

n+2-5-115
n-7-3-13
14 tháng 3 2020

cảm ơn nhiều nha!

9 tháng 3 2020

a)  \(n+7⋮n+2\)

=) \(\left[n+7-\left(n+2\right)\right]⋮n+2\)

=) \(n+7-n-2⋮n+2\)

=) \(5⋮n+2\)

=) \(n+2\inƯ\left(5\right)\)\(\left\{+-1;+-5\right\}\)

=) \(n\in\left\{-3;-1;3;-7\right\}\)

đăng kí kênh V-I-S hộ mình nha !

8 tháng 10 2016

a/ \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)

Để n + 2 chia hết cho n - 1 thì 3 phải chia hết cho n - 1 hay n -1 phải là ước của 3

=> n - 1 = {-3; -1; 1; 3} => n = {-2; 0; 2; 4}

b/  \(\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\)

Để 2n + 7 chia hết cho n + 1 thì 5 phải chia hết cho n +1 hay n +1 phải là ước của 5

=> n + 1 = {-5; -1; 1; 5} => n = {-6; -2; 0; 4}

Các câu còn lại làm tương tự

2 tháng 3 2022

ai kb ko kết đi chờ chi

1 tháng 11 2024

2024 r

Nên mình ko giải 

 

3 tháng 3 2020

a, n - 2 ⋮ n + 1

=> n + 1 - 3 ⋮ n + 1

=> 3 ⋮ n + 1

=> n + 1 thuộc Ư(3)

=> n + 1 thuộc {-1; 1; -3; 3}

=> n thuộc {-2; 0; -4; 2}

b, 2n - 3 ⋮ n - 1

=> 2n - 2 - 1 ⋮ n - 1

=> 2(n - 1) - 1 ⋮ n - 1

=> 1 ⋮ n - 1

=> n - 1 thuộc {-1; 1}

=> n thuộc {0; 2}

c, 3n + 5 ⋮ 2n - 1

=> 6n + 10 ⋮ 2n - 1

=> 6n - 3 + 13 ⋮ 2n - 1

=> 3(2n - 1) + 13 ⋮ 2n - 1

=> 13 ⋮ 2n - 1

=> 2n - 1 thuộc Ư(13)

=> 2n - 1 thuộc {-1; 1; -13; 13}

=> 2n thuộc {0; 2; -12; 14}

=> n thuộc {0; 1; -6; 7}

22 tháng 2 2019

(3n+2):(n-1) = 3 + 5/(n-1) 
a)Để 3n+2 chia hêt cho n-1 
thì n-1 phải là ước của 5 
do đó: 
n-1 = 1 => n = 2 
n-1 = -1 => n = 0 
n-1 = 5 => n = 6 
n-1 = -5 => n = -4 
Vậy n = {-4; 0; 2; 6} 
thì 3n+2 chia hêt cho n-1.

22 tháng 2 2019

c)3n+2 chia hết cho 2n-1

6n-3n+2 chia hết cho 2n-1

3(2n-1)+2 chia hết cho 2n-1

=>2 chia hết cho 2n-1 hay 2n-1 thuộc Ư(2)={1;-1;2;-2}

=>2n thuộc{2;0;3;-1}

=>n thuộc{1;0}