K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 3 2021

Lời giải:

Để $A,B$ đồng dạng thì: \(\left\{\begin{matrix} m-3=6\\ 2=n\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=9\\ n=2\end{matrix}\right.\)

28 tháng 3 2021

nhanh lên di

 

28 tháng 3 2021

nhanh lên mình sắp nộp rồi

\(A\cdot B=2017\cdot2018\cdot x^5y^{2n+2}\cdot z^{11-2m}\)

để hai đơn thức đồng dạng thì 2n+2=10 và 11-2m=5

=>n=4 và m=3

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich

14 tháng 3 2016

a) tacó:

B=\(\frac{-2}{m}.x^4.y^6=\frac{-2}{m}.\left(x^2.y^3\right)^2\)

=> Hai đơn thức A và B đồng dạng 

b)

A-B=5m(x2.y3)2-\(\frac{-2}{m}\).(x2.y3)2=\(\left(5m+2.1:m\right).\left(x^2.y^3\right)^2=5m+2m.\left(x^2.y^3\right)^2=7m.\left(x^4.y^6\right)\)

14 tháng 3 2016

a) A=5m(x2y3)2=5m.(x2)2.(y3)2=5m.x4.y6

B=-2/m.x4.y6

Vì cùng phần biến x4.y6=>A và B là 2 đơn thức đồng dạng

b) \(A-B=5m.x^4.y^6-\left(\frac{-2}{m}.x^4.y^6\right)=x^4y^6.\left[5-\left(\frac{-2}{m}\right)\right]=x^4.y^6.\left(5+\frac{2}{m}\right)=x^4.y^6.\frac{5m+2}{m}\)

c) đang nghĩ

Bài 4: 

\(P\left(x\right)=\left(-5x^3+2x^3+3x^3\right)+x^4+3x^2+\left(x-x\right)-4+7\)

\(=x^4+3x^2+3\)

\(Q\left(x\right)=-x^4+\left(5x^3+5x^3\right)+\left(-x^2-x^2\right)+\left(3x+x\right)-1\)

\(=-x^4+10x^3-2x^2+4x-1\)