Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để F nguyên \(\Leftrightarrow2n-1⋮n+2\)
\(\Leftrightarrow2n+4-5⋮n+2\)
\(\Leftrightarrow2.\left(n+2\right)-5⋮n+2\)
mà \(2.\left(n+2\right)⋮n+2\)
\(\Rightarrow5⋮n+2\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Rồi bạn lập bảng tự tính nốt nhé
Tích cho mình nhé please
Cho biểu thức A = 3/n+2
a)số nguyên n phải thỏa mãn điều kiện gì để A là phân số
Diều kiện: \(n+2\ne0\Leftrightarrow n\ne-2\)
b)tính giá trị của A khi n=3
Thay n=3 vào A ta được;
A=\(\frac{3}{3+2}=\frac{3}{5}\)
c)tìm các số nguyên n để A là một số nguyên
Để A là số nguyên thì: \(3⋮n+2\Leftrightarrow n+2\inƯ\left(3\right)\)
\(\Leftrightarrow n+2\in\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow n\in\left\{-5;-3;-1;1\right\}\)
Vậy .....
a) \(A=\frac{3-n}{n+1}=\frac{4-1-n}{n+1}=\frac{4}{n+1}-1\inℤ\)mà \(n\inℤ\)suy ra \(n+1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)
\(\Leftrightarrow n\in\left\{-5,-3,-2,0,1,3\right\}\).
b) \(B=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\inℤ\)mà \(n\inℤ\)suy ra \(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)
\(\Rightarrow n\in\left\{-1\right\}\)
c) \(C\inℤ\Rightarrow3C=\frac{6n+3}{3n+2}=\frac{6n+4-1}{3n+2}=2-\frac{1}{3n+2}\inℤ\) mà \(n\inℤ\)suy ra
.\(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)\(\Rightarrow n\in\left\{-1\right\}\)
Thử lại thỏa mãn.
ta có \(\frac{2n-1}{n-2}=\frac{2\left(n-2\right)+3}{n-2}=\frac{2\left(n-2\right)}{n-2}+\frac{3}{n-2}=2+\frac{3}{n-2}.\)
để 2n-1/n-2 là số nguyên thì \(2+\frac{3}{n-2}\varepsilonℤ\)mà \(2\varepsilonℤ\)nên \(\frac{3}{n-2}\varepsilonℤ\)hay \(3⋮n-2\Rightarrow n-2\varepsilonƯ\left(3\right)\)
Mà Ư(3)=\(\left\{\pm1;\pm3\right\}\)
TA CÓ BẢNG
n-2 | -3 | -1 | 1 | 3 |
n | -1 | 1 | 3 | 5 |
vậy với \(n\varepsilon\left\{-1;1;3;5\right\}thì...\)
Ta có:
\(\frac{2n-1}{n-2}\in Z\)
\(\Rightarrow\)\(2n-1\)\(⋮\)\(n-2\)
\(\Rightarrow\)\(2n-4+3\)\(⋮\)\(n-2\)
\(\Rightarrow\)\(2\left(n-2\right)+3\)\(⋮\)\(n-2\)
\(\Rightarrow\)\(3\)\(⋮\)\(n-2\)
\(\Rightarrow\)\(n-2\in U\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng tính gt sau:
\(n-2\) | \(-3\) | \(-1\) | \(1\) | \(3\) |
\(n\) | \(-1\) | \(1\) | \(3\) | \(5\) |
NX | Chọn | Chọn | Chọn | Chọn |
Vậy\(n\in\left\{\pm1;3;5\right\}\)
a) n phải khác 2
b) để A nguyên thì
1 chia hết cho 2-n
=> 2-n thuộc tập ước của 1
=> hoặc 2-n=1 =>n=1
hoặc 2-n=-1 =>n=3
hk tốt
a) Để A là phân số thì \(2-n\ne0\)
\(\Leftrightarrow n\ne2\)
b) Để A nguyên thì \(1⋮\left(2-n\right)\)
\(\Leftrightarrow2-n\inƯ\left(1\right)=\left\{\pm1\right\}\)
Lập bảng:
\(2-n\) | \(1\) | \(-1\) |
\(n\) | \(1\) | \(3\) |
Vậy n = 1 hoặc n = 3 thì A nguyên
bài làm :
a, ta có : \(A=\frac{5n-7}{n+2}=\frac{5\left(n+2\right)-17}{n+2}=5-\frac{17}{n+2}\)
để A nhận giá trị nguyên thì : \(5-\frac{17}{n+2}\) là số nguyên \(\Rightarrow\left(n+2\right)\) là Ư(17)
\(\Rightarrow\left(n+2\right)\)lần lượt nhận các giá trị \(\pm1,\pm17\)
ta lần lượt :
- với n + 2 = -1 => n = -3
- với n + 2 = 1 => n = -1
- với n + 2 = -17 => n = -19
- với n + 2 = 17 => n = 15
vậy ta tìm đc n = -3 ; n = -1 ; n = -19 ; n = 15
\(\frac{2n+2007}{n+2}\inℤ\)
\(\Leftrightarrow\frac{2n+4+2003}{n+2}\inℤ\)
\(\Leftrightarrow2+\frac{2003}{n+2}\inℤ\)
\(\Leftrightarrow\frac{2003}{n+2}\inℤ\)
\(\Leftrightarrow2003⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(2003\right)=\left\{-2003;-1;1;2003\right\}\)
\(\Leftrightarrow\)
thanks bạn nha tuấn thảo