Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0)
theo tính chất tỷ lệ thức
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
mik đồng ý với cánh diều tuổi thơ mà câu này cực kì đơn giản.
tick cho mik nhé.
a) Vì vai trò của x, y, z như nhau nên ko mất tính tổng quát, giả sử x≤y≤zx≤y≤z
⇒⇒ 3z ≥≥ xyz
⇒⇒ 3 ≥≥ xy
Vì xy nguyên dương nên xy = 1 hoặc xy = 2
+ Nếu xy = 1 thì x + y + z = z ⇒⇒ x + y = 0, loại vì x, y nguyên dương
+ Nếu xy = 2 thì x + y + z = 2z ⇒⇒ x + y = z. Do xy = 2 và x ≤≤ y nên x = 1, y = 2, do đó y = 3.
Vậy...
b, xyz = 9 + x + y + z
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz
giả sử: x ≥ y ≥ z ≥ 1, ta có:
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2
=> z^2 ≤ 12 => z = 1, 2 , 3
*z = 1:
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y
=> y ≤ 3 => y = 1,2,3
y =1 => x= 11 + x (vô nghiệm)
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1)
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên)
* z = 2
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y
=> y ≤ 5/2 => y = 2
=> 4x = 13 + x (không có nghiệm x nguyên)
* z =3:
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y
=> y ≤ 14/3 => y = 3, 4
y = 3 => 9x = 15 + x (không có nghiệm x nguyên)
y = 4 => 12x = 16 + x (không có nghiệm x nguyên)
Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.
chúc bạn hok tốt
a) Vì vai trò của x,y,z như nhau nên có thể giả sử \(x\ge y\ge z\)
Khi đó : \(xyz=4\left(x+y+z\right)\le12x\Rightarrow yz\le12\)
=> \(z^2\le12\Rightarrow z^2\in\left\{1;4;9\right\}\Rightarrow z\in\left\{1;2;3\right\}\)
+) Trường hợp 1 :
z = 1 thì xy = 4(x + y + 1) <=> (x - 4)(y - 4) = 20
Nên x - 4 và y - 4 là ước của 20 với \(x-4\ge y-4\ge-3\)(do \(x\ge y\ge z=1\))
x - 4 | 20 | 10 | 5 | 4 | 2 | 1 |
y - 4 | 1 | 2 | 4 | 5 | 10 | 20 |
x | 24 | 14 | 9 | 8 | 6 | 5 |
y | 5 | 6 | 8 | 9 | 14 | 24 |
Vậy ta được cặp (x;y) là \(\left(24;5\right);\left(14;6\right);\left(9;8\right)\)
Xét tiếp trường hợp z = 2,z = 3 nữa nhé
b) Tương tự