K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2015

a) \(\left(x+2\right)y^2+1=x\Leftrightarrow xy^2+2y^2+1-x=0\Leftrightarrow2y^2+1=x-xy^2\Leftrightarrow2y^2+1=x\left(1-y^2\right)\Leftrightarrow x=\frac{2y^2+1}{1-y^2}=-\frac{2y^2+1}{y^2-1}\)

\(=-2+\frac{3}{y^2-1}\)

Để \(x\in Z\)thì \(y^2-1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(y^2-1\)1-13-3
\(y^2\)204-2
\(y\)loại0loạiloại
\(x\)loại-5loạiloại

Vậy \(\left(x;y\right)=\left\{\left(1;0\right)\right\}\)

 

2 tháng 6 2016

mk ko bit

mik tính ko ra

16 tháng 11 2017

ta có:2(y+z)=x(yz-1)

=>2y+2z=xyz-x

=>2y+2z+x=xyz

mik ko làm tiếp đc do thiếu đ/k

25 tháng 9 2016

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

13 tháng 7 2017

đề đúng , giải sai kìa ...

31 tháng 7 2019

Em thử, sai thì thôi nha, chỗ đặt xong rồi thay vào P em ko biết mình có tính đúng hay sai nữa!

giả thiết \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\).

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\) thì a + b + c = 2; a, b, c > 0 và:

\(P=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{2}{2}=1\)

Đẳng thức xảy ra khi a = b = c = 2/3 hay \(x=y=z=\frac{3}{2}\)

7 tháng 1 2017

2/ a/ \(y\left(x-1\right)=x^2+2\)

\(\Leftrightarrow y\left(x-1\right)+1-x^2=3\)

\(\Leftrightarrow\left(x-1\right)\left(y-1-x\right)=3\)

Làm tiếp nhé

b/ \(x^2+xy+y^2=x^2y^2\)

\(\Leftrightarrow4x^2+4xy+4y^2=4x^2y^2\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)-\left(4x^2y^2+4xy+1\right)=-1\)

\(\Leftrightarrow\left(2x+2y\right)^2-\left(2xy+1\right)^2=-1\)

\(\Leftrightarrow\left(2x+2y+2xy+1\right)\left(2x+2y-2xy-1\right)=-1\)

Làm tiếp nhé

7 tháng 1 2017

1/ \(x^2+x+19=z^2\)

\(\Leftrightarrow4x^2+4x+76=4z^2\)

\(\Leftrightarrow\left(2x+1\right)^2-4z^2=-75\)

\(\Leftrightarrow\left(2x+1-2z\right)\left(2x+1+2z\right)=-75\)

Tới đây đơn giản rồi làm tiếp đi nhé