Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab^2+b+7⋮a^2b+a+b\Leftrightarrow a\left(ab^2+b+7\right)-b\left(a^2b+a+b\right)⋮a^2b+a+b\Leftrightarrow7a-b^2⋮a^2b+a+b\left(1\right)\)
\(+,7a=b^2\Rightarrow\left(a;b\right)=\left(7k^2;7k\right)\left(k\text{ nguyên dương}\right)\)
\(+,7a>b^2\text{ từ 1}\Rightarrow7a-b^2\ge a^2b+a+b\Leftrightarrow6a\ge a^2b+b+b^2\text{ mà: b là số nguyên dương}\Rightarrow b< 3\Leftrightarrow b\in\left\{1;2\right\}\)
làm tiếp
\(+,7a< b^2\text{ từ (1)}\Rightarrow b^2-7a\ge a^2b+a+b\Leftrightarrow voli\text{ :)}.Tự\text{ kết luận}\)
sáng 9/12/2018 là mình phải nộp bài rồi. Giups mình nhé mấy bạn.
Cậu chỉ cần đổi đề bài thành tìm a,b sao cho A là số nguyên là được.
Link chứng minh điều đó ở đây
https://diendantoanhoc.net/topic/71455-cho-ab-nguyen-d%C6%B0%C6%A1ng-ch%E1%BB%A9ng-minh-afraca2b2ab1-la-s%E1%BB%91-chinh-ph%C6%B0%C6%A1ng-n%E1%BA%BFu-a-nguyen/
Gắt vậy :) IMO 1988 :) vào TKHĐ của mình để xem hình ảnh