Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\) (1)
có : \(\left(2x-5\right)^{2000}\ge0\forall x\)
\(\left(3y+4\right)^{2002}\ge0\forall x\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\) (2)
\(\left(1\right)\left(2\right)\Rightarrow\left(2x-5\right)^{2000}+\left(3y-4\right)^{2002}=0\)
\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{cases}\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)
a) \(3x^2-10x+7\)
\(=3\left(x^2-\frac{10}{3}x+\frac{7}{3}\right)\)
\(=3\left(x^2-\frac{10}{3}x+\frac{25}{9}-\frac{4}{9}\right)\)
\(=3\left[\left(x-\frac{5}{3}\right)^2-\frac{4}{9}\right]\)
\(=3\left[\left(x-\frac{5}{3}\right)^2\right]-\frac{4}{3}\ge\frac{-4}{3}>0\)
b) \(4x^2+9x+5\)
\(=4x^2+9x+\frac{81}{16}-\frac{1}{16}\)
\(=\left(2x+\frac{9}{4}\right)^2-\frac{1}{16}\ge\frac{-1}{16}>0\)
với mọi số nguyên n , ta có n \(\le\)n2
Do đó từ đề bài suy ra :
a2 \(\le\)b \(\le\)b2 \(\le\)c \(\le\)c2 \(\le\)a \(\le\)a2
Do đó : a2 = b = b2 = c = c2 = a = a2
Ta có : a2 = a \(\Leftrightarrow\)a . ( a - 1 ) = 0 \(\Leftrightarrow\)a \(\in\){ 0 ; 1 }
Tương tự : b \(\in\){ 0 ; 1 } , c \(\in\){ 0 ; 1 }
Vậy bài toán có hai đáp số :
a = b = c = 0 và a = b = c = 1
Ta có : \(a^2\le b;b^2\le c;c^2\le a\)
Suy ra : \(a^2+b^2+c^2\le a+b+c\)
Mà số nào bình phương lên cũng lớn hơn số ban đầu
Nên a; b ; c chỉ có thể bằng 0 hoặc 1
tìm số nguyên dương n, biết:
a) 25<5n<625
b)3.27>3nlớn hơn, bằng 9
c)16 bé hơn, bằng 8n bé hơn, bằng 64
a) \(25< 5^n< 625\)
\(25=5^2;625=5^4\)
=> \(5^2< 5^n< 5^4\)
=> 2 < n < 4
=> n = 3
b) \(9\le3^n< 3.27\)
\(9=3^2;3.27=3.3^3=3^4\)
=> \(3^2\le3^n< 3^4\)
=> n = 2; hoặc n = 3
c) \(16\le8^n\le64\)
\(16=8.2;64=8^2\)
=> \(8.2\le8^n\le8^2\)
=> n = 2