Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm:
\(x^2+6x=2x-m+2\Leftrightarrow x^2+4x+m-2=0\) (1)
\(\Delta'=4-\left(m-2\right)=6-m>0\Rightarrow m< 6\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=m-2\end{matrix}\right.\)
\(x_1^3+x_2^3\ge4\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\ge4\)
\(\Leftrightarrow\left(-4\right)^3+12\left(m-2\right)\ge4\)
\(\Leftrightarrow12m\ge92\Rightarrow m\ge\frac{23}{3}\)
Vậy ko tồn tại m thỏa mãn?
b)
O B A M N
\(\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AO}=-\dfrac{1}{2}\overrightarrow{OA}\)
Vậy \(m=-\dfrac{1}{2};n=0\).
c)
\(\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{AB}=\dfrac{1}{2}\left(\overrightarrow{AO}+\overrightarrow{OB}\right)=-\dfrac{1}{2}\overrightarrow{OA}+\dfrac{1}{2}\overrightarrow{OB}\).
Vậy \(m=-\dfrac{1}{2};n=\dfrac{1}{2}\).
d)
\(\overrightarrow{MB}=\dfrac{1}{2}\overrightarrow{OB}\)
Vậy \(m=0;n=\dfrac{1}{2}\).
Ta có \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=2\sqrt{2\left(a^2+ab+2bc+2ca\right)}\)
\(=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)
Tương tự \(\sqrt{8b^2+56}\le2a+3b+2c;\)\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)
Do vậy \(Q\ge\frac{11a+11b+12c}{3a+2b+2c+2a+3b+2c+\frac{a+b+4c}{2}}=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a,b,c\right)=\left(1;1;\frac{3}{2}\right)\)
a) \(P=1957\)
b) \(S=19.\)
\(\Leftrightarrow2\left(\frac{a+b+c}{abc}\right)=1\Leftrightarrow2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=1\)
Mà \(a\le b\le c\Rightarrow1\le2\left(\frac{1}{a^2}+\frac{1}{a^2}+\frac{1}{a^2}\right)\)
\(\Rightarrow a^2\le6\Rightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\)
- Với \(a=1\Rightarrow bc=2\left(1+b+c\right)\)
\(\Leftrightarrow bc-2b-2c+4=6\)
\(\Leftrightarrow\left(b-2\right)\left(c-2\right)=6\) (pt ước số cơ bản, bạn tự giải)
- Với \(a=2\Rightarrow2bc=2\left(2+b+c\right)\)
\(\Rightarrow bc-b-c+1=3\Leftrightarrow\left(b-1\right)\left(c-1\right)=3\)