K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

thì để cho biểu thức âm chỉ cần tử âm

Mà 3m - 1 nếu m là âm thì chắc chắn 3m - 1 = âm

còn 4 + 5m nếu m mà lớn nhất thì = -1 vì 4 + 5. (-1 ) = 4 + ( -5 ) = -1 thì kết quả vẫn âm

Thế thôi 

:)

18 tháng 4 2017

\(m< 0\) là được

Đúng 100%

Đúng 100%

Đúng 100%

9 tháng 4 2018

\(a)\) Ta có : 

\(\frac{m-2}{4}+\frac{3m+1}{3}< 0\)

\(\Leftrightarrow\)\(\frac{3m-6+12m+4}{12}< 0\) ( quy đồng ) 

\(\Leftrightarrow\)\(3m-6+12m+4< 0\)

\(\Leftrightarrow\)\(\left(12m+3m\right)+\left(4-6\right)< 0\)

\(\Leftrightarrow\)\(15m-2< 0\)

\(\Leftrightarrow\)\(15m< 2\)

\(\Leftrightarrow\)\(m< \frac{2}{15}\)

Vậy để \(\frac{m-2}{4}+\frac{3m+1}{3}\) có giá trị âm thì \(m< \frac{2}{15}\)

Chúc bạn học tốt ~ 

9 tháng 4 2018

\(b)\) Ta có : 

\(\frac{m-4}{6m+9}>0\)

\(\Leftrightarrow\)\(m-4>0\) ( nhân hai vế cho \(6m+9\) ) 

\(\Leftrightarrow\)\(m>4\)

Vậy để \(\frac{m-4}{6m+9}\) có giá trị dương thì \(m>4\)

Chúc bạn học tốt ~ 

13 tháng 11 2019

a) \(\frac{3m-6n}{10n-5m}\)

\(=\frac{-3\left(2n-m\right)}{5\left(2n-m\right)}=\frac{-3}{5}\)

b) \(\frac{y^3+y^2+4y+4}{y^2+2y-8}\)

\(=\frac{y^2\left(y+1\right)+4\left(y+1\right)}{y^2+2y+1-9}\)

\(=\frac{\left(y^2+4\right)\left(y+1\right)}{\left(y+1\right)^2-9}\)

\(=\frac{\left(y^2+4\right)\left(y+1\right)}{\left(y-2\right)\left(y+4\right)}\)

c) \(\frac{x^2-xy-xz+yz}{x^2+xy-xz-yz}\)

\(=\frac{x\left(x-y\right)-z\left(x-y\right)}{x\left(x+y\right)-z\left(x+y\right)}\)

\(=\frac{\left(x-z\right)\left(x-y\right)}{\left(x-z\right)\left(x+y\right)}\)

\(=\frac{x-y}{x+y}\)

13 tháng 12 2019

a) ĐKXĐ: \(\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\\2-x\ne0\end{cases}}\) => \(\hept{\begin{cases}x\ne-2\\x\ne\pm2\\x\ne2\end{cases}}\) => \(x\ne\pm2\)

Ta có:Q = \(\frac{x-1}{x+2}+\frac{4x+4}{x^2-4}+\frac{3}{2-x}\)

Q = \(\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4x+4}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

Q = \(\frac{x^2-2x-x+2+4x+4-3x-6}{\left(x+2\right)\left(x-2\right)}\)

Q = \(\frac{x^2-2x}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x}{x+2}\)

b) ĐKXĐ P: x - 3 \(\ne\)0 => x \(\ne\)3

Ta có: P = 3 => \(\frac{x+2}{x-3}=3\)

=> x + 2 = 3(x - 3)

=> x + 2 = 3x - 9

=> x - 3x = -9 - 2

=> -2x = -11

=> x = 11/2 (tm)

Với x = 11/2 thay vào Q => Q = \(\frac{\frac{11}{2}}{\frac{11}{2}+2}=\frac{11}{15}\)

c) Với x \(\ne\)\(\pm\)2; x \(\ne\)3

Ta có: M = PQ = \(\frac{x+2}{x-3}\cdot\frac{x}{x+2}=\frac{x}{x-3}=\frac{x-3+3}{x-3}=1+\frac{3}{x-3}\)

Để M \(\in\)Z <=> 3 \(⋮\)x - 3

=> x - 3 \(\in\)Ư(3) = {1; -1; 3; -3}

Lập bảng:

x - 3 1 -1 3 -3
  x 4 2 (ktm) 6 0

Vậy ...

2 tháng 11 2019

a) Ta có:

\(\frac{1}{2\left(m+1\right)}+\frac{1}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{3m+2}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(m+1\right)\left(3m+2\right)}\)

\(+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{3m+3}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{3\left(m+1\right)}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{3}{2\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{3\left(8m+5\right)}{2\left(3m+2\right)\left(8m+5\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{24m+15}{2\left(3m+2\right)\left(8m+5\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{24m+16}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{8\left(3m+2\right)}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{8}{2\left(8m+5\right)}=\frac{4}{8m+5}\left(đpcm\right)\)

2 tháng 11 2019

b) Ta có: \(\frac{1}{m+1}+\frac{1}{3m+2}+\frac{1}{\left(m+1\right)\left(3m+2\right)}\)

\(=\frac{3m+2}{\left(m+1\right)\left(3m+2\right)}+\frac{m+1}{\left(m+1\right)\left(3m+2\right)}\)

\(+\frac{1}{\left(m+1\right)\left(3m+2\right)}\)

\(=\frac{4m+4}{\left(m+1\right)\left(3m+2\right)}\)

\(=\frac{4\left(m+1\right)}{\left(m+1\right)\left(3m+2\right)}\)

\(=\frac{4}{3m+2}\left(đpcm\right)\)