Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các số hữu tỉ dương x,y,z biết:
\(\frac{1}{x+\frac{1}{y+\frac{1}{z}}}=1-\frac{1}{2+\frac{1}{3}}\)
\(1-\frac{1}{2+\frac{1}{3}}=1-\frac{1}{\frac{7}{3}}=1-\frac{3}{7}=\frac{4}{7}=\frac{1}{\frac{7}{4}}=\frac{1}{1+\frac{3}{4}}=\frac{1}{1+\frac{1}{\frac{4}{3}}}=\frac{1}{1+\frac{1}{1+\frac{1}{3}}}\)
Vậy, x = 1; y = 1; z = 3
a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)
(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)
(=) \(\left(b-a\right).\left(a-b\right)=ab\)
Vì a,b là 2 số dương
=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\)
Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
b, Cộng vế với vế của 3 đẳng thức ta có :
\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)
(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)
(=) \(x+y+z=\frac{-5}{12}\)
Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)
Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)
Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)
Bài 2 :
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
\(\frac{43}{30}=1+\frac{13}{30}\)
hay \(\frac{1}{x+\frac{1}{y+\frac{1}{z}}}\)= \(\frac{13}{30}\)
=> \(x+\frac{1}{y+\frac{1}{z}}\) = \(\frac{30}{13}=2+\frac{4}{13}\) => x = 2.
=> \(\frac{1}{y+\frac{1}{z}}\) = \(\frac{4}{13}\) => \(y+\frac{1}{z}\) = \(\frac{13}{4}\) = \(3+\frac{1}{4}\) => y = 3, z = 4.
Vậy x = 2, y = 3, z = 4.
mk nha =))
Ta có:
\(\frac{43}{30}=1+\frac{13}{30}\)
\(\Rightarrow\frac{1}{x+\frac{1}{y\frac{1}{x}}}=\frac{13}{30}\)
hay \(x+\frac{1}{y+\frac{1}{x}}=\frac{30}{13}\)
mà \(\frac{30}{13}=2+\frac{4}{13}\Rightarrow x=2\)
\(\Rightarrow\frac{1}{y+\frac{1}{z}}=\frac{4}{13}\)
hay \(y+\frac{1}{z}=\frac{13}{4}=3+\frac{1}{4}\Rightarrow y=3\)
\(\Rightarrow z=4\)
Vậy \(x=2;y=3;z=4\)