Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(xy=x+y\Rightarrow y=xy-x=x\left(y-1\right)\)
\(\Rightarrow x:y=\frac{x}{x\left(y-1\right)}=y-1\)
\(\Rightarrow x+y=y-1\Leftrightarrow x=-1\)
\(\Rightarrow y-1=-y\Leftrightarrow2y=1\Leftrightarrow y=\frac{1}{2}\)
Vậy \(x=-1;y=\frac{1}{2}\)
b) \(x-y=xy\Rightarrow x=xy+y=y\left(x+1\right)\)
\(\Rightarrow x:y=\frac{y\left(x+1\right)}{y}=x+1\)
\(\Rightarrow x-y=x+1\Leftrightarrow y=-1\)
\(\Leftrightarrow x+1=-x\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)
a) y khác 0.
x.y = x: y nên \(x.y:\frac{x}{y}=1\) hay \(\frac{x.y.y}{x}=y^2=1\)
Vậy y = 1 hoặc -1 (chắc bạn hiểu chứ)
x+ y = x.y nên \(\frac{x+y}{x.y}=\frac{1}{x}+\frac{1}{y}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y=-1 thì 1/x = 1-(-1) = 2 => x=1/2
Vậy x=1/2 và y = -1
b) x.y = x: y => y = 1 hoặc -1 (câu a)
x-y = x.y nên \(\frac{x-y}{x.y}=\frac{1}{y}-\frac{1}{x}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y = -1 thì 1/x = -1 - 1 = -2 => x=-1/2
Vậy x=-1/2 và y=-1
a) xy = x : y
<=> xy2 = x
<=> y2 = 1
<=> y = 1 hoặc y = -1
-nếu y = 1 có
x + 1 = x
<=> 1 = 0 (loại)
-nếu y = -1 có
x - 1 = -x
<=> x = \(\frac{1}{2}\)
thay vào thấy thỏa mãn
Vậy x = \(\frac{1}{2}\) và y = -1
Ta có:
x - y = x.y => x = x.y + y = y.(x + 1)
=> x : y = x + 1 = x - y
=> y = -1
=> x = -1.(x + 1) = -x - 1
=> x + x = -1 = 2x
=> x = -1/2
Vậy x = -1/2; y = -1
Dễ thấy rằng y khác 0 (để cho x : y là số xác định)
Hơn nữa x khác 0, vì nếu x = 0 thì xy = x : y = 0 nhưng x - y khác 0 (vì y khác 0)
Vì xy = x : y suy ra y^2 = 1 ---> y = 1 hoặc y = -1
+ Nếu y = 1 ---> x - 1 = x.1 (vô nghiệm nên tr/hợp này loại)
+ Nếu y = -1 ---> x + 1 = - x ---> 2x = -1 ---> x = -1/2 (nhận)
Vậy x = -1/2 ; y = -1.
Ta có: x+y=x.y
Chia hêt vế cho y ta được:
\(\frac{x+y}{y}=\frac{x.y}{y}\)
=>\(\frac{x}{y}+1=x\)
=>x:y+1=x
Mà x:y=x+y nên:
x+y+1=x
=>y=-1
=> x-1=x.(-1)
=>2x=1
=>x=1/2
Vậy x=1/2 ; y=-1
Ta có:x+y=xy=>x=xy-y=>x=y(x-1)=>x:y=x-1 (1)
Mà x:y=x+y (2)
Từ (1) và (2) ta suy ra:y=-1
nên x=\(\frac{1}{2}\)
xy = x : y
<=> xy2 = x
<=> y2 = 1
<=> y = 1 hoặc y = -1
-nếu y = 1 có
x + 1 = x
<=> 1 = 0 (loại)
-nếu y = -1 có
x - 1 = -x
<=> x = 1212
thay vào thấy thỏa mãn
Vậy x = 1212 và y = -1
\(x+y=xy=\frac{x}{y}\)
Điều kiện: \(y\ne0\)
Nghiệm duy nhất là: (x = 1/2; y = -1).