Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
Áp dụng BĐT Bunhiacopxky:
$A^2=(\sqrt{x-1}+\sqrt{9-x})^2\leq (x-1+9-x)(1+1)=16$
$\Rightarrow A\leq 4$
Vậy $A_{\max}=4$. Giá trị này đạt tại $x=5$
b.
$A=\frac{3(\sqrt{x}+2)+5}{\sqrt{x}+2}=3+\frac{5}{\sqrt{x}+2}$
Để $A$ nguyên thì $\frac{5}{\sqrt{x}+2}=m$ với $m$ nguyên dương
$\Leftrightarrow \sqrt{x}+2=\frac{5}{m}$
$\sqrt{x}=\frac{5-2m}{m}$
Vì $\sqrt{x}\geq 0$ nên $\frac{5-2m}{m}\geq 0$
Mà $m$ nguyên dương nên $5-2m\geq 0$
$\Leftrightarrow m\leq 2,5$.
$\Rightarrow m=1; 2$
$\Rightarrow x=9; x=\frac{1}{4}$
Ta có : \(M=\frac{\sqrt{x}+6}{\sqrt{x}+1}=\frac{\sqrt{x}+1+5}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+1}+\frac{5}{\sqrt{x}+1}=1+\frac{5}{\sqrt{x}+1}\)
Để M nguyên thì 5 chia hết cho \(\sqrt{x}+1\)
Nên : \(\sqrt{x}+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng :
\(\sqrt{x}+1\) | -5 | -1 | 1 | 5 |
\(\sqrt{x}\) | -6 (loại) | -2(loại | 0 | 4 |
x | 0 | 2 |
bài có nhầm đề không bạn? vì tử = mẫu thì M=1 rồi kìa
\(\dfrac{3\sqrt{x}+11}{\sqrt{x}+2}=\dfrac{3\sqrt{x}+6+5}{\sqrt{x}+2}=\dfrac{3\left(\sqrt{x}+2\right)}{\sqrt{x}+2}+\dfrac{5}{\sqrt{x}+2}=3+\dfrac{5}{\sqrt{x}+2}\)
Để bt nguyên thì:
\(\dfrac{5}{\sqrt{x}+2}\in Z\Leftrightarrow\sqrt{x}+2\inƯ\left(5\right)\)
\(\Leftrightarrow\sqrt{x}+2=\left\{-5;-1;1;5\right\}\)
\(\Leftrightarrow\sqrt{x}=\left\{3\right\}\Leftrightarrow x=9\)
vậy........
Ta có ĐKXĐ : \(x\ge0 ; x\ne 4\)
\( \Rightarrow \) \(M = \frac{P}{Q} = \frac{\sqrt{x}-3}{\sqrt{x}+1}\) \(\ne 1 - \frac{4}{\sqrt{x}+1}\)
M nguyên \(\Leftrightarrow \) \(\frac{4}{\sqrt{x}+1} \) nguyên
Ta có : Với \(x\ge0\) \( \Rightarrow \) \(\sqrt{x}+1 > 0 \) \( \Rightarrow \) \(\frac{4}{\sqrt{x}+1} \) >0
Lại có : \(x\ge0\) \( \Rightarrow \) \(\sqrt{x}+1 \ge 0 \) \( \Rightarrow \) \(\frac{4}{\sqrt{x}+1} \) \(\le 4\)
Do đó : 0< \(\frac{4}{\sqrt{x}+1} \) \(\le 4\)
Vì \(\frac{4}{\sqrt{x}+1} \) nguyên \( \Rightarrow \) \(\frac{4}{\sqrt{x}+1} \) \(\in \) { 1;2;3;4 }
* Với \(\frac{4}{\sqrt{x}+1} \)=1 \( \Rightarrow \) x = 9 ( Thỏa mãn ĐKXĐ )
* Với \(\frac{4}{\sqrt{x}+1} \) = 2 \( \Rightarrow \) x=1 ( Thỏa mãn ĐKXĐ )
* Với \(\frac{4}{\sqrt{x}+1} \) = 3 \( \Rightarrow \) x=\(\frac{1}{9}\) ( Thỏa mãn ĐKXĐ )
* Với \(\frac{4}{\sqrt{x}+1} \) = 4 \( \Rightarrow \) x=0 ( Thỏa mãn ĐKXĐ )
Vậy để M nguyên khi và chỉ khi \(x \in \) { 0;\(\frac{1}{9}\) ; 1;9}
Dòng thứ 2 từ trên xuống là dấu "=" hết nhé bạn không có dấu \(\ne \) đâu .
Ta có \(9x-4y=\left(3\sqrt{x}-2\sqrt{y}\right)\left(3\sqrt{x}+2\sqrt{y}\right)\)là số hữu tỷ
Vì \(\left(3\sqrt{x}-2\sqrt{y}\right)\)(1) là số hữu tỷ nên \(\left(3\sqrt{x}+2\sqrt{y}\right)\)(2) cũng là số hữu tỷ
Lấy (2) - (1) và (2) + (1) ta được
\(\hept{\begin{cases}4\sqrt{y}\\6\sqrt{x}\end{cases}}\)là 2 số hữu tỷ vậy \(\sqrt{x},\sqrt{y}\)là hai số hữu tỷ
Xửa đề:
\(\frac{x-y\sqrt{2015}}{y-z\sqrt{2015}}=\frac{m}{n}\) (vơi m, n thuộc Z)
\(\Leftrightarrow xn-ym=\left(yn-zm\right)\sqrt{2015}\)
\(\Leftrightarrow\hept{\begin{cases}xn-ym=0\\yn-zm=0\end{cases}}\)
\(\Rightarrow\frac{x}{y}=\frac{m}{n}=\frac{y}{z}\)
\(\Rightarrow xz=y^2\)
\(\Rightarrow x^2+y^2+z^2=x^2+2xz+z^2-y^2=\left(x+z+y\right)\left(x+z-y\right)\)
\(\Rightarrow\orbr{\begin{cases}x+y+z=1\left(l\right)\\x+z-y=1\end{cases}}\)
\(\Rightarrow x+z=y+1\)
\(\Leftrightarrow x^2+2xz+z^2=y^2+2y+1\)
\(\Leftrightarrow x^2+\left(y-1\right)^2+z^2=2\)
\(\Rightarrow x=y=z=1\)
a=3√x +11/√x +2
=3(√x +2)+5/√x +2