K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

giả sử a(1-b),b(1-c),c(1-a) >1/4

=> a(1-a)b(b-1)c(c-1)>1/4^3

ma a(1-a)=a-a^2=1/4- (a-1/2)^2<=1/4

tuong tu....

=> a(1-a)b(b-1)c(c-1)=<1/4^3(trai voi gia su)

Vay trong 3 h a(1-b),b(1-c),c(1-a) co it nhat 1 so < 1/4

4 tháng 12 2017

 Ta có 1/a + 1/b + 1/c = (bc + ac + ac)/abc = ab + bc + ca 
=> a + b + c = ab + bc + ca 
<=> a + b + c - ab - bc - ca = 0 
<=> a + b + c - ab - bc - ac + abc - 1 = 0 
<=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0 
<=> -a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0 
<=> (b - 1)(-a + 1 -c + ac) = 0 
<=> (b - 1)[ (-a + 1) + (ac - c) ] = 0 
<=> (b - 1)[ -(a - 1) + c(a - 1) ] = 0 
<=> (a - 1)(b - 1)(c - 1) = 0 
<=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0 
<=> a = 1 hoặc b = 1 hoặc c = 1 

7 tháng 3 2017

ai giúp mình được không?

7 tháng 3 2017

\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}=\frac{1}{x^2+y^2}+\frac{4}{2xy}\)

Áp dụng BĐT C-S dạng Engel ta có: 

\(A=\frac{1}{x^2+y^2}+\frac{4}{2xy}=\frac{1^2}{x^2+y^2}+\frac{2^2}{2xy}\)

\(\ge\frac{\left(1+2\right)^2}{x^2+y^2+2xy}=\frac{3^2}{\left(x+y\right)^2}=9\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

Vậy với \(x=y=\frac{1}{2}\) thì \(A_{Min}=9\)

6 tháng 3 2017

Kiểm tra mà bạn vẫn có thời gian đưa câu hỏi ư! Bái phục mà thi j vậy bn?