Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn có nhầm đề không? Nếu chỉ có như vậy thì có vô số đa thức P(x) thỏa mãn với P(x) dạng:
\(P\left(x\right)=x^4+\left(a-3\right)x^3+\left(3-3a\right)x^2+\left(3a-1\right)x-a\)
Với a nguyên bất kì
Bạn có thể thay thử vài giá trị của a và lấy P(x) chia \(\left(x-1\right)^3\) sẽ thấy
Ta có (x3 + ax2 + bx + 3) : (x2 - 2x - 1) = x + a - 2 dư x(b - 2a + 5) + a + 1
Để (x3 + ax2 + bx + 3) \(⋮\) (x2 - 2x - 1)
=> x(b - 2a + 5) + a + 1 = 0 \(\forall x\)
=> \(\hept{\begin{cases}b-2a+5=0\\a+1=0\end{cases}}\Rightarrow\hept{\begin{cases}b-2a=-5\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}b=-7\\a=-1\end{cases}}\)
a,thay P(1),P(2),P(3),P(4) vào P(x(=) rồi giải hệ pt
câu b thì thay x=567 vào P(x) tính đc ở trên nhờ có các hệ số a,b,c,d
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
P(x) = ax^19 + bx^94 + cx^1994 =
ax * [(x³)^6 - 1] + bx * [(x³)^31 - 1] + cx² * [(x³)^664 - 1] + c(x² + x + 1) + (a + b - c)x - c
P(x) chia hết cho (x² + x + 1) khi và chỉ khi (a + b - c)x - c chia hết cho (x² + x + 1) => a + b - c = 0 và c = 0
(đa thức chia hết cho đa thức bậc cao hơn khi và chỉ khi đó là đa thức 0)
tức a + b = c = 0
Đặt G(x) = ( x - 1 )3 = x3 - 3x2 + 3x - 1
H(x) là thương trong phép chia P(x) cho G(x)
P(x) bậc 4 ; G(x) bậc 3 => H(x) bậc 1
Hệ số tự do của P(x) là 1 ; hệ số tự do của G(x) là -1 => Hệ số tự do của H(x) là -1
=> H(x) = x - 1
Khi đó : P(x) chia hết cho G(x) <=> P(x) = G(x).H(x)
<=> x4 + ax3 + bx2 + cx + 1 = ( x3 - 3x2 + 3x - 1 )( x - 1 )
<=> x4 + ax3 + bx2 + cx + 1 = x4 - x3 - 3x3 + 3x2 + 3x2 - 3x - x + 1
<=> x4 + ax3 + bx2 + cx + 1 = x4 - 4x3 + 6x2 - 4x + 1
Đồng nhất hệ số ta có : a = -4 ; b = 6 ; c = -4
Vậy a = -4 ; b = 6 ; c = -4