K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow a\cdot x^3+b\cdot x^2+ac\cdot x^2+b\cdot cx+2ax+2b=x^3+x^2-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b+ac=1\\bc+2a=0\\2b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=2\\-1\cdot2+2\cdot1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=2\end{matrix}\right.\)

b: \(\left(z^2-z+1\right)\left(az^2+bz+c\right)\)

\(=az^4+bz^3+cz^2-az^3-bz^2-cz+az^2+bz+c\)

\(=az^4+z^3\left(b-a\right)+z^2\left(c-b+a\right)+z\left(-c+b\right)+c\)

Theo đề, ta có: a=2; \(\left\{{}\begin{matrix}b-a=-1\\c-b+a=2\\-c+b=0\\c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-1+a=-1+2=1\\c=2+b-a=2+1-2=1\\1-1=0\\c=1\end{matrix}\right.\)

=>a=2; b=1; c=1

10 tháng 4 2018

C= x2 y - \(\dfrac{1}{2}\)xy2 + \(\dfrac{1}{3}\)x2y +\(\dfrac{2}{3}\)xy2 + 1

C=(x2y + \(\dfrac{1}{3}\)x2y )+( - \(\dfrac{1}{2}\)xy2 +\(\dfrac{2}{3}\)xy2)+ 1

C=\(\dfrac{4}{3}\)x2y +\(\dfrac{1}{6}\)xy2+1

=>Bặc: 3

D= xy2z + 3xyz2 - \(\dfrac{1}{5}\)xy2z - \(\dfrac{1}{3}\)xyz2 - 2

D=(xy2z - \(\dfrac{1}{5}\)xy2z )+( 3xyz2 - \(\dfrac{1}{3}\)xyz2) - 2

D=\(\dfrac{4}{5}\)xy2z +\(\dfrac{8}{3}\)xyz2 - 2

=> Bậc :4

E = 3xy5 - x2y + 7xy - 3xy5 + 3x2y - \(\dfrac{1}{2}\)xy + 1

E=(3xy5- 3xy5) + (- x2y + 3x2y) + (7xy - \(\dfrac{1}{2}\)xy)+ 1

E= 2x2y + \(\dfrac{13}{2}\)xy + 1

=> Bậc: 3

K = 5x3 - 4x + 7x2 - 6x3 + 4x + 1

K= (5x3 - 6x3 ) + (- 4x + 4x) +1

K= -1x3 + 1

=>Bậc: 3

F = 12x3y2 - \(\dfrac{3}{7}\)x4y2 + 2xy3 - x3y2 + x4y2 - xy3 - 5

F=( 12x3y2 - x3y2) + (- \(\dfrac{3}{7}\)x4y2 + x4y2) + (2xy3 - xy3) -5

F=11x3y2 + \(\dfrac{4}{7}\)x4y2 + xy3 - 5

=> Bậc :6

CHÚC BN HỌC TỐT ^-^

a.

Chứng minh ΔCHO=ΔCFOΔCHO=ΔCFO (cạnh huyền – góc nhọn)

suy ra: CH = CF. Kết luận ΔFCHΔFCH cân tại C.

- Vẽ IG //AC (G ∈∈ FH). Chứng minh ΔFIGΔFIG cân tại I.

- Suy ra: AH = IG, và ∠IGK=∠AHK∠IGK=∠AHK.

- Chứng minh ΔAHK=ΔIGKΔAHK=ΔIGK (g-c-g).

- Suy ra AK = KI..

b.

Vẽ OE ⊥⊥ AB tại E. Tương tự câu a ta có: ΔAEH,ΔBEFΔAEH,ΔBEF thứ tự cân tại A, B. Suy ra: BE = BF và AE = AH.

BA = BE + EA = BF + AH = BF + FI = BI. Suy ra: ΔABIΔABI cân tại B.

Mà BO là phân giác góc B, và BK là đường trung tuyến của ΔABIΔABI nên: B, O, K là ba điểm thẳng hàng.

4 tháng 2 2019

bài 2b.

\(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019\)

\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-x\right|+\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=2019\)

\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x=2019\)

Với \(a< 0\left(a\in Z\right)\)ta có:\(\left|a\right|+a=-a+a=0⋮2\)

Với \(a=0\)ta có:\(\left|a\right|+a=0⋮2\)

Với \(a>0\)ta có:\(\left|a\right|+a=2a⋮2\)

Vậy với mọi số nguyên a thì ta luôn có:\(\left|a\right|+a⋮2\)

Áp dụng vào bài toán,ta được:\(\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x⋮2\)

\(\Rightarrow2019⋮2\)(vô lý)

Vậy không thể tồn tại số nguyên x,y,z thỏa mãn:\(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019\)

7 tháng 9 2019

Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath

8 tháng 1 2020

#Kim Taehuyng bạn bít lm b3 chx