K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

Câu hỏi của Trà My - Toán lớp 8 - Học toán với OnlineMath

9 tháng 9 2019

Theo bài ra:

\(f\left(x\right)=\left(g\left(x\right)\right)^2\)

<=> \(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+d\right)^2\)

<=> \(x^4+ax^3+bx^2-8x+4=x^4+c^2x^2+d^2+2.x^2.cx+2.cx.d+2x^2.d\)

<=> \(x^4+ax^3+bx^2-8x+4=x^4+2cx^3+\left(c^2+2d\right)x^2+2cdx+d^2\)

Cân bằng hệ số hai vế ta có: 

\(\hept{\begin{cases}a=2c\\b=c^2+2d\\-8=2cd;4=d^2\end{cases}}\)

=> Tìm được a, b, c, d.

14 tháng 10 2017

\(\left(x^2+cx+d\right)^2=x^4+c^2x^2+d^2+2x^3c+2x^2d+2cdx\)

\(x^4+ax^3+bx^2-8x+4\: \)là bình phương đúng của \(x^2+cx+d\) nên:

\(x^4+ax^3+bx^2-8x+4=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)

\(\Rightarrow\left\{{}\begin{matrix}a=2c\\b=2d+c^2\\2cd=-8\\4=d^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-4\\b=8\\c=-2\\d=2\end{matrix}\right.\)

vậy các số cần tìm là a=-4; b=8; c=-2; d=2

9 tháng 9 2019

Câu hỏi của Trà My - Toán lớp 8 - Học toán với OnlineMath

10 tháng 10 2017

Ta có \(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+d\right)^2\).
Hệ số tự do của \(\left(x^2+cx+d\right)^2\) là \(d^2\).
Vì vậy \(d^2=4\Leftrightarrow d=\pm2\).
Với \(d=2\) ta có:
\(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+2\right)^2\).
Áp dụng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\) ta có:
\(\left(x^2+cx+2\right)^2=x^4+c^2x^2+4+2cx^3+4cx+4x^2\)\(=x^4+2cx^3+x^2\left(c^2+4\right)+4cx+4\).
So sánh \(x^4+2cx^3+x^2\left(c^2+4\right)+4cx+4\) với  \(x^4+ax^3+bx^2-8x+4\) ta được:
\(\hept{\begin{cases}2c=a\\c^2+4=b\\4c=-8\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}c=-2\\a=-4\\b=8\end{cases}}\).
Tương tự cho trường hợp \(d=-2\).

 

5 tháng 9 2018

dùng đồng nhất thức nhanh hơn đấy =)

21 tháng 9 2016

a/ Giả sử \(x^4+2x^3+3x^2+ax+b=\left(x^2+cx+d\right)^2\)

\(\Leftrightarrow x^4+2x^3+3x^2+ax+b=x^4+c^2x^2+d^2+2x^3c+2xcd+2dx^2\)

\(\Leftrightarrow x^3\left(2-2c\right)+x^2\left(3-c^2-2d\right)+x\left(a-2cd\right)+\left(b-d^2\right)=0\)

Áp dụng hệ số bất định, ta có : 

\(\begin{cases}2-2c=0\\3-c^2-2d=0\\a-2cd=0\\b-d^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}a=2\\b=1\\c=1\\d=1\end{cases}\)

Vậy : \(x^4+2x^3+3x^2+2x+1=\left(x^2+x+1\right)^2\)

b/ Tương tự

 

21 tháng 9 2016

thank you bn nhiều 

23 tháng 5 2017

Ta có:\(A=x^4-2x^3-x^2+ax+b\)

          \(A=x^3\left(x-2\right)-x\left(x-a\right)+b\)

                   Để A là đa thức thì x - a = x -2

                            Do đó a=2;b=0

26 tháng 2 2018

Ta có:A=x4−2x3−x2+ax+b

          A=x3(x−2)−x(x−a)+b

                   Để A là đa thức thì x - a = x -2

                            Do đó a=2;b=0

2 tháng 3 2017

= 50

nho k minh nha\